{"title":"Effect of Surface Tension Relaxation on the Stability of a Charged Jet","authors":"A. I. Grigoryev, N. Yu. Kolbneva, S. O. Shiryaeva","doi":"10.1134/S0015462823603017","DOIUrl":null,"url":null,"abstract":"<p>In the asymptotic calculations of the first order of smallness by the dimensionless amplitude of capillary waves on the surface of charged jets of a polar liquid, the effect of the relaxation effect of surface tension on the regularities of their implementation is studied. Calculations are carried out on the model of an ideal incompressible electrically conductive fluid. It is shown that taking into account the effect of dynamic surface tension leads to an increase in the order of the dispersion equation, which has another damping root, describing the oscillations of the jet surface related to the destruction of the near-surface double electric layer (destruction of the ordering of polar molecules in the near-surface layer). At sufficiently large charges (prebreakdown in the sense of the ignition of a corona discharge in a gaseous medium), this solution becomes unstable, as a result of which the entire surface undergoes electrostatic instability. In the used mathematical model of an ideal fluid, the motion of the jet surface that occurs when the surface tension relaxation effect is turned on and the attenuation decrements of the capillary wave motions are purely of a relaxation nature.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 9","pages":"1740 - 1750"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823603017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the asymptotic calculations of the first order of smallness by the dimensionless amplitude of capillary waves on the surface of charged jets of a polar liquid, the effect of the relaxation effect of surface tension on the regularities of their implementation is studied. Calculations are carried out on the model of an ideal incompressible electrically conductive fluid. It is shown that taking into account the effect of dynamic surface tension leads to an increase in the order of the dispersion equation, which has another damping root, describing the oscillations of the jet surface related to the destruction of the near-surface double electric layer (destruction of the ordering of polar molecules in the near-surface layer). At sufficiently large charges (prebreakdown in the sense of the ignition of a corona discharge in a gaseous medium), this solution becomes unstable, as a result of which the entire surface undergoes electrostatic instability. In the used mathematical model of an ideal fluid, the motion of the jet surface that occurs when the surface tension relaxation effect is turned on and the attenuation decrements of the capillary wave motions are purely of a relaxation nature.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.