Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing

Zheyuan Chen, Jian Liu, Jian Li, Mukun Yuan, Guangping Yu
{"title":"Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing","authors":"Zheyuan Chen,&nbsp;Jian Liu,&nbsp;Jian Li,&nbsp;Mukun Yuan,&nbsp;Guangping Yu","doi":"10.1007/s43684-024-00076-8","DOIUrl":null,"url":null,"abstract":"<div><p>Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00076-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00076-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用色差公式为 CIELAB 建立多输出模型,实现可持续纺织品染色
纺织品染色需要优化成分组合和工艺参数,以实现目标颜色特性。对这些因素与最终颜色之间的复杂关系进行建模具有挑战性。在这种情况下,我们提出了一种物理信息多输出回归方法,根据染色成分和工艺输入建立 CIELAB 颜色值模型。利用注意力机制和多任务学习,该模型在联合预测多种颜色输出方面优于基准方法。具体来说,Transformer 模型的注意机制捕捉到了染色成分和工艺参数之间复杂的相互作用,而多任务学习框架则利用了 CIELAB 色彩空间的 L*、a* 和 b* 维度之间的内在相关性。此外,还通过物理信息损失函数将物理知识与 CMC 色差公式结合起来。该损失函数与注意机制一起,使模型能够学习染色过程变量与最终颜色输出之间的细微关系,从而提高整体预测精度。这降低了试错成本和资源浪费,通过最大限度地减少水和能源消耗以及化学品排放,促进了环境的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1