首页 > 最新文献

自主智能系统(英文)最新文献

英文 中文
Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis 利用识别特征分析,基于双目距离测量的卡车行人安全警报系统
Pub Date : 2024-11-13 DOI: 10.1007/s43684-024-00080-y
Tingting Bao, Ding Lin, Xumei Zhang, Zhiguo Zhou, Kejia Wang

As an essential part of modern smart manufacturing, road transport with large and heavy trucks has in-creased dramatically. Due to the inside wheel difference in the process of turning, there is a considerable safety hazard in the blind area of the inside wheel difference. In this paper, multiple cameras combined with deep learning algorithms are introduced to detect pedestrians in the blind area of wheel error. A scheme of vehicle-pedestrian safety alarm detection system is developed via the integration of YOLOv5 and an improved binocular distance measurement method. The system accurately measures the distance between the truck and nearby pedestrians by utilizing multiple cameras and PP Human recognition, providing real-time safety alerts. The experimental results show that this method significantly reduces distance measurement errors, improves the reliability of pedestrian detection, achieves high accuracy and real-time performance, and thus enhances the safety of trucks in complex traffic environments.

作为现代智能制造的重要组成部分,大型重型卡车的公路运输量急剧增加。由于转弯过程中会产生内轮差,内轮差盲区存在较大的安全隐患。本文引入多摄像头结合深度学习算法,对车轮误差盲区内的行人进行检测。通过整合 YOLOv5 和改进的双目测距方法,开发了一种车辆行人安全报警检测系统方案。该系统利用多个摄像头和 PP 人脸识别技术精确测量卡车与附近行人的距离,实时发出安全警报。实验结果表明,该方法显著降低了距离测量误差,提高了行人检测的可靠性,实现了高精度和实时性,从而增强了复杂交通环境中卡车的安全性。
{"title":"Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis","authors":"Tingting Bao,&nbsp;Ding Lin,&nbsp;Xumei Zhang,&nbsp;Zhiguo Zhou,&nbsp;Kejia Wang","doi":"10.1007/s43684-024-00080-y","DOIUrl":"10.1007/s43684-024-00080-y","url":null,"abstract":"<div><p>As an essential part of modern smart manufacturing, road transport with large and heavy trucks has in-creased dramatically. Due to the inside wheel difference in the process of turning, there is a considerable safety hazard in the blind area of the inside wheel difference. In this paper, multiple cameras combined with deep learning algorithms are introduced to detect pedestrians in the blind area of wheel error. A scheme of vehicle-pedestrian safety alarm detection system is developed via the integration of YOLOv5 and an improved binocular distance measurement method. The system accurately measures the distance between the truck and nearby pedestrians by utilizing multiple cameras and PP Human recognition, providing real-time safety alerts. The experimental results show that this method significantly reduces distance measurement errors, improves the reliability of pedestrian detection, achieves high accuracy and real-time performance, and thus enhances the safety of trucks in complex traffic environments.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00080-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimal trajectory planning for manipulators based on CMOSPBO 基于 CMOSPBO 的机械手多目标最优轨迹规划
Pub Date : 2024-11-01 DOI: 10.1007/s43684-024-00077-7
Tingting Bao, Zhijun Wu, Jianliang Chen

Feasible, smooth, and time-jerk optimal trajectory is essential for manipulators utilized in manufacturing process. A novel technique to generate trajectories in the joint space for robotic manipulators based on quintic B-spline and constrained multi-objective student psychology based optimization (CMOSPBO) is proposed in this paper. In order to obtain the optimal trajectories, two objective functions including the total travelling time and the integral of the squared jerk along the whole trajectories are considered. The whole trajectories are interpolated by quintic B-spline and then optimized by CMOSPBO, while taking into account kinematic constraints of velocity, acceleration, and jerk. CMOSPBO mainly includes improved student psychology based optimization, archive management, and an adaptive ε-constraint handling method. Lévy flights and differential mutation are adopted to enhance the global exploration capacity of the improved SPBO. The ε value is varied with iterations and feasible solutions to prevent the premature convergence of CMOSPBO. Solution density estimation corresponding to the solution distribution in decision space and objective space is proposed to increase the diversity of solutions. The experimental results show that CMOSPBO outperforms than SQP, and NSGA-II in terms of the motion efficiency and jerk. The comparison results demonstrate the effectiveness of the proposed method to generate time-jerk optimal and jerk-continuous trajectories for manipulators.

对于生产过程中使用的机械手而言,可行、平滑且时间紧迫的最优轨迹至关重要。本文提出了一种基于五次 B 样条和受约束多目标学生心理优化(CMOSPBO)的机器人机械手关节空间轨迹生成新技术。为了获得最佳轨迹,考虑了两个目标函数,包括总行程时间和整个轨迹上的运动平方积分。通过五次 B-样条对整个轨迹进行插值,然后利用 CMOSPBO 进行优化,同时考虑到速度、加速度和颠簸的运动学约束。CMOSPBO 主要包括基于学生心理的改进优化、档案管理和自适应ε约束处理方法。采用莱维飞行和差分突变来增强改进型 SPBO 的全局探索能力。ε值随迭代次数和可行解而变化,以防止 CMOSPBO 过早收敛。提出了与决策空间和目标空间的解分布相对应的解密度估计,以增加解的多样性。实验结果表明,CMOSPBO 在运动效率和抽动方面优于 SQP 和 NSGA-II。对比结果表明,所提出的方法能有效地为机械手生成时间颠簸最优和颠簸连续的轨迹。
{"title":"Multi-objective optimal trajectory planning for manipulators based on CMOSPBO","authors":"Tingting Bao,&nbsp;Zhijun Wu,&nbsp;Jianliang Chen","doi":"10.1007/s43684-024-00077-7","DOIUrl":"10.1007/s43684-024-00077-7","url":null,"abstract":"<div><p>Feasible, smooth, and time-jerk optimal trajectory is essential for manipulators utilized in manufacturing process. A novel technique to generate trajectories in the joint space for robotic manipulators based on quintic B-spline and constrained multi-objective student psychology based optimization (CMOSPBO) is proposed in this paper. In order to obtain the optimal trajectories, two objective functions including the total travelling time and the integral of the squared jerk along the whole trajectories are considered. The whole trajectories are interpolated by quintic B-spline and then optimized by CMOSPBO, while taking into account kinematic constraints of velocity, acceleration, and jerk. CMOSPBO mainly includes improved student psychology based optimization, archive management, and an adaptive <i>ε</i>-constraint handling method. Lévy flights and differential mutation are adopted to enhance the global exploration capacity of the improved SPBO. The <i>ε</i> value is varied with iterations and feasible solutions to prevent the premature convergence of CMOSPBO. Solution density estimation corresponding to the solution distribution in decision space and objective space is proposed to increase the diversity of solutions. The experimental results show that CMOSPBO outperforms than SQP, and NSGA-II in terms of the motion efficiency and jerk. The comparison results demonstrate the effectiveness of the proposed method to generate time-jerk optimal and jerk-continuous trajectories for manipulators.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00077-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning 基于熵和深度学习的多步正则性评估和时间序列排序联合预测系统
Pub Date : 2024-10-25 DOI: 10.1007/s43684-024-00078-6
Yichen Zhou, Wenhe Han, Heng Zhou

Customer maintenance is of vital importance to the enterprise management. Valuable assessment and efficient prediction for customer ordering behavior can offer better decision-making and reduce business costs significantly. According to existing studies about customer behavior regularity segment and demand prediction most focus on e-commerce and other fields with large amount of data, making them not suitable for small enterprises and data features like sparsity and outliers are not mined when doing regularity quantification. Additionally, more and more complex network structures for demand prediction are proposed, which builds on the assumption that all the samples have predictive value, ignoring the fine-grained analysis of different time series regularity with high cost. To deal with the above issues, a multi-step regularity assessment and joint prediction system for ordering time series is proposed. For extracting features, comprehensive assessment of customer regularity based on entropy weight method with the result of predictability quantification using K-Means clustering algorithm, real entropy, LZW algorithm and anomaly detection adopting Isolation Forest algorithm not only gives an objective result to ‘how high the regularity of customers is’, filling the gap in the field of regularity quantification, but also provides a theoretical basis for demand prediction models selection. Prediction models: Random Forest regression, XGBoost, CNN and LSTM network are experimented with sMAPE and MSLE for performance evaluation to verify the effectiveness of the proposed regularity quantitation method. Moreover, a merged CNN-BiLSTM neural network model is established for predicting those customers with low regularity and difficult to predict by traditional machine leaning algorithms, which performs better on the data set compared to others. Random Forest is still used for prediction of customers with high regularity due to its high training efficiency. Finally, the results of prediction, regularity quantification, and classification are output from the intelligent system, which is capable of providing scientific basis for corporate strategy decision and has highly extendibility in other enterprises and fields for follow-up research.

客户维护对企业管理至关重要。对客户订购行为进行有价值的评估和有效的预测,可以为企业提供更好的决策,并大大降低企业成本。现有关于客户行为规律性细分和需求预测的研究大多集中在电子商务等数据量大的领域,因此不适合小型企业,而且在进行规律性量化时没有挖掘稀疏性和异常值等数据特征。此外,越来越多用于需求预测的复杂网络结构被提出,它们建立在所有样本都具有预测价值的假设之上,忽略了对不同时间序列规律性的精细分析,成本较高。针对上述问题,我们提出了一种多步骤的时间序列排序规律性评估和联合预测系统。在特征提取方面,利用 K-Means 聚类算法、实熵、LZW 算法和 Isolation Forest 算法的异常检测结果进行预测量化,基于熵权法对客户规律性进行综合评估,不仅客观地给出了 "客户规律性有多高 "的结果,填补了规律性量化领域的空白,也为需求预测模型的选择提供了理论依据。预测模型:随机森林回归、XGBoost、CNN 和 LSTM 网络与 sMAPE 和 MSLE 进行了性能评估实验,以验证所提出的规律性量化方法的有效性。此外,还建立了一个 CNN-BiLSTM 合并神经网络模型,用于预测规律性低且传统机器精益算法难以预测的客户,该模型在数据集上的表现优于其他模型。由于随机森林的训练效率高,因此仍将其用于预测规律性高的客户。最后,智能系统输出了预测、规律性量化和分类的结果,能够为企业战略决策提供科学依据,在其他企业和领域的后续研究中具有很强的可扩展性。
{"title":"A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning","authors":"Yichen Zhou,&nbsp;Wenhe Han,&nbsp;Heng Zhou","doi":"10.1007/s43684-024-00078-6","DOIUrl":"10.1007/s43684-024-00078-6","url":null,"abstract":"<div><p>Customer maintenance is of vital importance to the enterprise management. Valuable assessment and efficient prediction for customer ordering behavior can offer better decision-making and reduce business costs significantly. According to existing studies about customer behavior regularity segment and demand prediction most focus on e-commerce and other fields with large amount of data, making them not suitable for small enterprises and data features like sparsity and outliers are not mined when doing regularity quantification. Additionally, more and more complex network structures for demand prediction are proposed, which builds on the assumption that all the samples have predictive value, ignoring the fine-grained analysis of different time series regularity with high cost. To deal with the above issues, a multi-step regularity assessment and joint prediction system for ordering time series is proposed. For extracting features, comprehensive assessment of customer regularity based on entropy weight method with the result of predictability quantification using K-Means clustering algorithm, real entropy, LZW algorithm and anomaly detection adopting Isolation Forest algorithm not only gives an objective result to ‘how high the regularity of customers is’, filling the gap in the field of regularity quantification, but also provides a theoretical basis for demand prediction models selection. Prediction models: Random Forest regression, XGBoost, CNN and LSTM network are experimented with sMAPE and MSLE for performance evaluation to verify the effectiveness of the proposed regularity quantitation method. Moreover, a merged CNN-BiLSTM neural network model is established for predicting those customers with low regularity and difficult to predict by traditional machine leaning algorithms, which performs better on the data set compared to others. Random Forest is still used for prediction of customers with high regularity due to its high training efficiency. Finally, the results of prediction, regularity quantification, and classification are output from the intelligent system, which is capable of providing scientific basis for corporate strategy decision and has highly extendibility in other enterprises and fields for follow-up research.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00078-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation 金属粉末生产的生命周期评估:基于贝叶斯随机克里金模型的自主估算
Pub Date : 2024-10-17 DOI: 10.1007/s43684-024-00079-5
Haibo Xiao, Baoyun Gao, Shoukang Yu, Bin Liu, Sheng Cao, Shitong Peng

Metal powder contributes to the environmental burdens of additive manufacturing (AM) substantially. Current life cycle assessments (LCAs) of metal powders present considerable variations of lifecycle environmental inventory due to process divergence, spatial heterogeneity, or temporal fluctuation. Most importantly, the amounts of LCA studies on metal powder are limited and primarily confined to partial material types. To this end, based on the data surveyed from a metal powder supplier, this study conducted an LCA of titanium and nickel alloy produced by electrode-inducted and vacuum-inducted melting gas atomization, respectively. Given that energy consumption dominates the environmental burden of powder production and is influenced by metal materials’ physical properties, we proposed a Bayesian stochastic Kriging model to estimate the energy consumption during the gas atomization process. This model considered the inherent uncertainties of training data and adaptively updated the parameters of interest when new environmental data on gas atomization were available. With the predicted energy use information of specific powder, the corresponding lifecycle environmental impacts can be further autonomously estimated in conjunction with the other surveyed powder production stages. Results indicated the environmental impact of titanium alloy powder is slightly higher than that of nickel alloy powder and their lifecycle carbon emissions are around 20 kg CO2 equivalency. The proposed Bayesian stochastic Kriging model showed more accurate predictions of energy consumption compared with conventional Kriging and stochastic Kriging models. This study enables data imputation of energy consumption during gas atomization given the physical properties and producing technique of powder materials.

金属粉末在很大程度上加重了增材制造(AM)的环境负担。目前对金属粉末进行的生命周期评估(LCA)显示,由于工艺不同、空间异质性或时间波动,生命周期环境清单存在相当大的差异。最重要的是,有关金属粉末的生命周期评估研究数量有限,而且主要局限于部分材料类型。为此,本研究根据从一家金属粉末供应商处获得的数据,分别对通过电感应和真空感应熔化气体雾化法生产的钛合金和镍合金进行了生命周期评估。鉴于能耗在粉末生产的环境负担中占主导地位,且受金属材料物理性质的影响,我们提出了贝叶斯随机克里金模型来估算气体雾化过程中的能耗。该模型考虑了训练数据固有的不确定性,并在获得新的气体雾化环境数据时对相关参数进行自适应更新。有了特定粉末的预测能源使用信息,就可以结合其他调查的粉末生产阶段,进一步自主估算相应的生命周期环境影响。结果表明,钛合金粉末的环境影响略高于镍合金粉末,其生命周期碳排放量约为 20 千克二氧化碳当量。与传统克里金模型和随机克里金模型相比,所提出的贝叶斯随机克里金模型对能耗的预测更为准确。根据粉末材料的物理性质和生产技术,这项研究可以对气体雾化过程中的能耗进行数据推算。
{"title":"Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation","authors":"Haibo Xiao,&nbsp;Baoyun Gao,&nbsp;Shoukang Yu,&nbsp;Bin Liu,&nbsp;Sheng Cao,&nbsp;Shitong Peng","doi":"10.1007/s43684-024-00079-5","DOIUrl":"10.1007/s43684-024-00079-5","url":null,"abstract":"<div><p>Metal powder contributes to the environmental burdens of additive manufacturing (AM) substantially. Current life cycle assessments (LCAs) of metal powders present considerable variations of lifecycle environmental inventory due to process divergence, spatial heterogeneity, or temporal fluctuation. Most importantly, the amounts of LCA studies on metal powder are limited and primarily confined to partial material types. To this end, based on the data surveyed from a metal powder supplier, this study conducted an LCA of titanium and nickel alloy produced by electrode-inducted and vacuum-inducted melting gas atomization, respectively. Given that energy consumption dominates the environmental burden of powder production and is influenced by metal materials’ physical properties, we proposed a Bayesian stochastic Kriging model to estimate the energy consumption during the gas atomization process. This model considered the inherent uncertainties of training data and adaptively updated the parameters of interest when new environmental data on gas atomization were available. With the predicted energy use information of specific powder, the corresponding lifecycle environmental impacts can be further autonomously estimated in conjunction with the other surveyed powder production stages. Results indicated the environmental impact of titanium alloy powder is slightly higher than that of nickel alloy powder and their lifecycle carbon emissions are around 20 kg CO<sub>2</sub> equivalency. The proposed Bayesian stochastic Kriging model showed more accurate predictions of energy consumption compared with conventional Kriging and stochastic Kriging models. This study enables data imputation of energy consumption during gas atomization given the physical properties and producing technique of powder materials.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00079-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing 利用色差公式为 CIELAB 建立多输出模型,实现可持续纺织品染色
Pub Date : 2024-09-26 DOI: 10.1007/s43684-024-00076-8
Zheyuan Chen, Jian Liu, Jian Li, Mukun Yuan, Guangping Yu

Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.

纺织品染色需要优化成分组合和工艺参数,以实现目标颜色特性。对这些因素与最终颜色之间的复杂关系进行建模具有挑战性。在这种情况下,我们提出了一种物理信息多输出回归方法,根据染色成分和工艺输入建立 CIELAB 颜色值模型。利用注意力机制和多任务学习,该模型在联合预测多种颜色输出方面优于基准方法。具体来说,Transformer 模型的注意机制捕捉到了染色成分和工艺参数之间复杂的相互作用,而多任务学习框架则利用了 CIELAB 色彩空间的 L*、a* 和 b* 维度之间的内在相关性。此外,还通过物理信息损失函数将物理知识与 CMC 色差公式结合起来。该损失函数与注意机制一起,使模型能够学习染色过程变量与最终颜色输出之间的细微关系,从而提高整体预测精度。这降低了试错成本和资源浪费,通过最大限度地减少水和能源消耗以及化学品排放,促进了环境的可持续发展。
{"title":"Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing","authors":"Zheyuan Chen,&nbsp;Jian Liu,&nbsp;Jian Li,&nbsp;Mukun Yuan,&nbsp;Guangping Yu","doi":"10.1007/s43684-024-00076-8","DOIUrl":"10.1007/s43684-024-00076-8","url":null,"abstract":"<div><p>Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00076-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved vision-only localization method for mobile robots in indoor environments 改进的室内环境移动机器人纯视觉定位方法
Pub Date : 2024-09-18 DOI: 10.1007/s43684-024-00075-9
Gang Huang, Liangzhu Lu, Yifan Zhang, Gangfu Cao, Zhe Zhou

To solve the problem of mobile robots needing to adjust their pose for accurate operation after reaching the target point in the indoor environment, a localization method based on scene modeling and recognition has been designed. Firstly, the offline scene model is created by both handcrafted feature and semantic feature. Then, the scene recognition and location calculation are performed online based on the offline scene model. To improve the accuracy of recognition and location calculation, this paper proposes a method that integrates both semantic features matching and handcrafted features matching. Based on the results of scene recognition, the accurate location is obtained through metric calculation with 3D information. The experimental results show that the accuracy of scene recognition is over 90%, and the average localization error is less than 1 meter. Experimental results demonstrate that the localization has a better performance after using the proposed improved method.

为了解决移动机器人在室内环境中到达目标点后需要调整姿态以便准确操作的问题,我们设计了一种基于场景建模和识别的定位方法。首先,通过手工特征和语义特征创建离线场景模型。然后,根据离线场景模型进行在线场景识别和定位计算。为了提高识别和位置计算的准确性,本文提出了一种集成语义特征匹配和手工特征匹配的方法。在场景识别结果的基础上,通过三维信息的度量计算获得准确的位置。实验结果表明,场景识别的准确率超过 90%,平均定位误差小于 1 米。实验结果表明,使用改进方法后,定位效果更好。
{"title":"Improved vision-only localization method for mobile robots in indoor environments","authors":"Gang Huang,&nbsp;Liangzhu Lu,&nbsp;Yifan Zhang,&nbsp;Gangfu Cao,&nbsp;Zhe Zhou","doi":"10.1007/s43684-024-00075-9","DOIUrl":"10.1007/s43684-024-00075-9","url":null,"abstract":"<div><p>To solve the problem of mobile robots needing to adjust their pose for accurate operation after reaching the target point in the indoor environment, a localization method based on scene modeling and recognition has been designed. Firstly, the offline scene model is created by both handcrafted feature and semantic feature. Then, the scene recognition and location calculation are performed online based on the offline scene model. To improve the accuracy of recognition and location calculation, this paper proposes a method that integrates both semantic features matching and handcrafted features matching. Based on the results of scene recognition, the accurate location is obtained through metric calculation with 3D information. The experimental results show that the accuracy of scene recognition is over 90%, and the average localization error is less than 1 meter. Experimental results demonstrate that the localization has a better performance after using the proposed improved method.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00075-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing with autonomous model vehicles: a software stack for driving in smart city environments 与自动驾驶模型车竞争:智能城市环境中的驾驶软件堆栈
Pub Date : 2024-08-14 DOI: 10.1007/s43684-024-00074-w
Julius Bächle, Jakob Häringer, Noah Köhler, Kadir-Kaan Özer, Markus Enzweiler, Reiner Marchthaler

This article introduces an open-source software stack designed for autonomous 1:10 scale model vehicles. Initially developed for the Bosch Future Mobility Challenge (BFMC) student competition, this versatile software stack is applicable to a variety of autonomous driving competitions. The stack comprises perception, planning, and control modules, each essential for precise and reliable scene understanding in complex environments such as a miniature smart city in the context of BFMC. Given the limited computing power of model vehicles and the necessity for low-latency real-time applications, the stack is implemented in C++, employs YOLO Version 5 s for environmental perception, and leverages the state-of-the-art Robot Operating System (ROS) for inter-process communication. We believe that this article and the accompanying open-source software will be a valuable resource for future teams participating in autonomous driving student competitions. Our work can serve as a foundational tool for novice teams and a reference for more experienced participants. The code and data are publicly available on GitHub.

本文介绍了专为 1:10 比例自动驾驶模型车设计的开源软件栈。这款多功能软件堆栈最初是为博世未来交通挑战赛(BFMC)学生竞赛开发的,适用于各种自动驾驶竞赛。该堆栈包括感知、规划和控制模块,每个模块对于在复杂环境(如 BFMC 中的微型智能城市)中精确可靠地理解场景都至关重要。鉴于模型车的计算能力有限以及低延迟实时应用的必要性,该堆栈采用 C++ 实现,使用 YOLO Version 5 s 进行环境感知,并利用最先进的机器人操作系统 (ROS) 进行进程间通信。我们相信,这篇文章和随附的开源软件将成为未来参加自动驾驶学生竞赛团队的宝贵资源。我们的工作可作为新手团队的基础工具和经验丰富的参赛者的参考资料。代码和数据可在 GitHub 上公开获取。
{"title":"Competing with autonomous model vehicles: a software stack for driving in smart city environments","authors":"Julius Bächle,&nbsp;Jakob Häringer,&nbsp;Noah Köhler,&nbsp;Kadir-Kaan Özer,&nbsp;Markus Enzweiler,&nbsp;Reiner Marchthaler","doi":"10.1007/s43684-024-00074-w","DOIUrl":"10.1007/s43684-024-00074-w","url":null,"abstract":"<div><p>This article introduces an open-source software stack designed for autonomous 1:10 scale model vehicles. Initially developed for the Bosch Future Mobility Challenge (BFMC) student competition, this versatile software stack is applicable to a variety of autonomous driving competitions. The stack comprises perception, planning, and control modules, each essential for precise and reliable scene understanding in complex environments such as a miniature smart city in the context of BFMC. Given the limited computing power of model vehicles and the necessity for low-latency real-time applications, the stack is implemented in C++, employs YOLO Version 5 s for environmental perception, and leverages the state-of-the-art Robot Operating System (ROS) for inter-process communication. We believe that this article and the accompanying open-source software will be a valuable resource for future teams participating in autonomous driving student competitions. Our work can serve as a foundational tool for novice teams and a reference for more experienced participants. The code and data are publicly available on GitHub.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00074-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel method for measuring center-axis velocity of unmanned aerial vehicles through synthetic motion blur images 通过合成运动模糊图像测量无人驾驶飞行器中心轴速度的新方法
Pub Date : 2024-07-09 DOI: 10.1007/s43684-024-00073-x
Quanxi Zhan, Yanmin Zhou, Junrui Zhang, Chenyang Sun, Runjie Shen, Bin He

Accurate velocity measurement of unmanned aerial vehicles (UAVs) is essential in various applications. Traditional vision-based methods rely heavily on visual features, which are often inadequate in low-light or feature-sparse environments. This study presents a novel approach to measure the axial velocity of UAVs using motion blur images captured by a UAV-mounted monocular camera. We introduce a motion blur model that synthesizes imaging from neighboring frames to enhance motion blur visibility. The synthesized blur frames are transformed into spectrograms using the Fast Fourier Transform (FFT) technique. We then apply a binarization process and the Radon transform to extract light-dark stripe spacing, which represents the motion blur length. This length is used to establish a model correlating motion blur with axial velocity, allowing precise velocity calculation. Field tests in a hydropower station penstock demonstrated an average velocity error of 0.048 m/s compared to ultra-wideband (UWB) measurements. The root-mean-square error was 0.025, with an average computational time of 42.3 ms and CPU load of 17%. These results confirm the stability and accuracy of our velocity estimation algorithm in challenging environments.

在各种应用中,精确测量无人飞行器(UAV)的速度至关重要。传统的基于视觉的方法严重依赖于视觉特征,而在弱光或特征稀少的环境中,这种方法往往不够充分。本研究提出了一种利用无人飞行器安装的单目摄像头捕获的运动模糊图像测量无人飞行器轴向速度的新方法。我们引入了一种运动模糊模型,该模型可合成相邻帧的图像,以提高运动模糊的可见度。合成的模糊帧通过快速傅立叶变换(FFT)技术转换成频谱图。然后,我们采用二值化处理和拉顿变换来提取明暗条纹间距,这代表了运动模糊长度。该长度用于建立运动模糊与轴向速度的相关模型,从而实现精确的速度计算。水电站水闸的现场测试表明,与超宽带 (UWB) 测量相比,平均速度误差为 0.048 米/秒。均方根误差为 0.025,平均计算时间为 42.3 毫秒,CPU 负载为 17%。这些结果证实了我们的速度估计算法在挑战性环境中的稳定性和准确性。
{"title":"A novel method for measuring center-axis velocity of unmanned aerial vehicles through synthetic motion blur images","authors":"Quanxi Zhan,&nbsp;Yanmin Zhou,&nbsp;Junrui Zhang,&nbsp;Chenyang Sun,&nbsp;Runjie Shen,&nbsp;Bin He","doi":"10.1007/s43684-024-00073-x","DOIUrl":"10.1007/s43684-024-00073-x","url":null,"abstract":"<div><p>Accurate velocity measurement of unmanned aerial vehicles (UAVs) is essential in various applications. Traditional vision-based methods rely heavily on visual features, which are often inadequate in low-light or feature-sparse environments. This study presents a novel approach to measure the axial velocity of UAVs using motion blur images captured by a UAV-mounted monocular camera. We introduce a motion blur model that synthesizes imaging from neighboring frames to enhance motion blur visibility. The synthesized blur frames are transformed into spectrograms using the Fast Fourier Transform (FFT) technique. We then apply a binarization process and the Radon transform to extract light-dark stripe spacing, which represents the motion blur length. This length is used to establish a model correlating motion blur with axial velocity, allowing precise velocity calculation. Field tests in a hydropower station penstock demonstrated an average velocity error of 0.048 m/s compared to ultra-wideband (UWB) measurements. The root-mean-square error was 0.025, with an average computational time of 42.3 ms and CPU load of 17%. These results confirm the stability and accuracy of our velocity estimation algorithm in challenging environments.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00073-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141666199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An uncertainty-aware domain adaptive semantic segmentation framework 不确定性感知领域自适应语义分割框架
Pub Date : 2024-07-08 DOI: 10.1007/s43684-024-00070-0
Huilin Yin, Pengyu Wang, Boyu Liu, Jun Yan

Semantic segmentation is significant to realize the scene understanding of autonomous driving. Due to the lack of annotated real-world data, the technology of domain adaptation is applied so that the model is trained on the synthetic data and inferred on the real data. However, this domain gap leads to aleatoric and epistemic uncertainty. These uncertainties link to the potential safety issue of autonomous driving in normal weather and adverse weather. In this study, we explore the scientific problem that has received sparse attention previously. We postulate that the Dual Attention module can mitigate the uncertainty in the task of semantic segmentation and provide some empirical study to validate it. Furthermore, the utilization of Kullback-Leibler divergence (KL divergence) helps the estimation of aleatoric uncertainty and boosts the robustness of the segmentation model. Our empirical study on the diverse datasets of semantic segmentation demonstrates the effectiveness of our method in normal and adverse weather. Our code is available at: https://github.com/liubo629/Seg-Uncertainty-dual-attention.

语义分割对于实现自动驾驶的场景理解意义重大。由于缺乏有注释的真实世界数据,因此采用了领域适应技术,即在合成数据上训练模型,在真实数据上推断模型。然而,这种领域差距导致了不确定性和认识上的不确定性。这些不确定性与自动驾驶在正常天气和恶劣天气下的潜在安全问题有关。在本研究中,我们探讨了这一之前很少有人关注的科学问题。我们假设双重注意力模块可以减轻语义分割任务中的不确定性,并提供了一些实证研究来验证这一假设。此外,Kullback-Leibler 分歧(KL 分歧)的使用有助于估计不确定性,并提高分割模型的鲁棒性。我们在不同语义分割数据集上进行的实证研究证明了我们的方法在正常和恶劣天气下的有效性。我们的代码见:https://github.com/liubo629/Seg-Uncertainty-dual-attention。
{"title":"An uncertainty-aware domain adaptive semantic segmentation framework","authors":"Huilin Yin,&nbsp;Pengyu Wang,&nbsp;Boyu Liu,&nbsp;Jun Yan","doi":"10.1007/s43684-024-00070-0","DOIUrl":"10.1007/s43684-024-00070-0","url":null,"abstract":"<div><p>Semantic segmentation is significant to realize the scene understanding of autonomous driving. Due to the lack of annotated real-world data, the technology of domain adaptation is applied so that the model is trained on the synthetic data and inferred on the real data. However, this domain gap leads to aleatoric and epistemic uncertainty. These uncertainties link to the potential safety issue of autonomous driving in normal weather and adverse weather. In this study, we explore the scientific problem that has received sparse attention previously. We postulate that the Dual Attention module can mitigate the uncertainty in the task of semantic segmentation and provide some empirical study to validate it. Furthermore, the utilization of Kullback-Leibler divergence (KL divergence) helps the estimation of aleatoric uncertainty and boosts the robustness of the segmentation model. Our empirical study on the diverse datasets of semantic segmentation demonstrates the effectiveness of our method in normal and adverse weather. Our code is available at: https://github.com/liubo629/Seg-Uncertainty-dual-attention.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00070-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141667973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple unmanned ship coverage and exploration in complex sea areas 复杂海域的多无人船覆盖和勘探
Pub Date : 2024-07-05 DOI: 10.1007/s43684-024-00069-7
Feifei Chen, Qingyun Yu

This study addresses the complexities of maritime area information collection, particularly in challenging sea environments, by introducing a multi-agent control model for regional information gathering. Focusing on three key areas—regional coverage, collaborative exploration, and agent obstacle avoidance—we aim to establish a multi-unmanned ship coverage detection system. For regional coverage, a multi-objective optimization model considering effective area coverage and time efficiency is proposed, utilizing a heuristic simulated annealing algorithm for optimal allocation and path planning, achieving a 99.67% effective coverage rate in simulations. Collaborative exploration is tackled through a comprehensive optimization model, solved using an improved greedy strategy, resulting in a 100% static target detection and correct detection index. Agent obstacle avoidance is enhanced by a collision avoidance model and a distributed underlying collision avoidance algorithm, ensuring autonomous obstacle avoidance without communication or scheduling. Simulations confirm zero collaborative failures. This research offers practical solutions for multi-agent exploration and coverage in unknown sea areas, balancing workload and time efficiency while considering ship dynamics constraints.

本研究通过引入区域信息收集的多代理控制模型,解决了海洋区域信息收集的复杂性,尤其是在具有挑战性的海洋环境中。重点关注三个关键领域--区域覆盖、协同探索和代理避障--我们的目标是建立一个多无人船覆盖探测系统。在区域覆盖方面,提出了一个考虑有效区域覆盖和时间效率的多目标优化模型,利用启发式模拟退火算法进行优化分配和路径规划,在仿真中实现了 99.67% 的有效覆盖率。通过综合优化模型解决协作探索问题,并使用改进的贪婪策略求解,从而实现了 100% 的静态目标检测率和正确检测指数。避撞模型和分布式底层避撞算法增强了代理避障能力,确保无需通信或调度即可自主避障。模拟证实了零协作失败。这项研究为在未知海域进行多代理探索和覆盖提供了切实可行的解决方案,在兼顾工作量和时间效率的同时,还考虑到了船舶动力学约束。
{"title":"Multiple unmanned ship coverage and exploration in complex sea areas","authors":"Feifei Chen,&nbsp;Qingyun Yu","doi":"10.1007/s43684-024-00069-7","DOIUrl":"10.1007/s43684-024-00069-7","url":null,"abstract":"<div><p>This study addresses the complexities of maritime area information collection, particularly in challenging sea environments, by introducing a multi-agent control model for regional information gathering. Focusing on three key areas—regional coverage, collaborative exploration, and agent obstacle avoidance—we aim to establish a multi-unmanned ship coverage detection system. For regional coverage, a multi-objective optimization model considering effective area coverage and time efficiency is proposed, utilizing a heuristic simulated annealing algorithm for optimal allocation and path planning, achieving a 99.67% effective coverage rate in simulations. Collaborative exploration is tackled through a comprehensive optimization model, solved using an improved greedy strategy, resulting in a 100% static target detection and correct detection index. Agent obstacle avoidance is enhanced by a collision avoidance model and a distributed underlying collision avoidance algorithm, ensuring autonomous obstacle avoidance without communication or scheduling. Simulations confirm zero collaborative failures. This research offers practical solutions for multi-agent exploration and coverage in unknown sea areas, balancing workload and time efficiency while considering ship dynamics constraints.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00069-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141673492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
自主智能系统(英文)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1