Behavior of the Linearized Ballistic-Conductive Model of Heat Conduction in Three-Dimensional Space

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Pub Date : 2024-09-26 DOI:10.1134/S1063784224060380
S. A. Rukolaine
{"title":"Behavior of the Linearized Ballistic-Conductive Model of Heat Conduction in Three-Dimensional Space","authors":"S. A. Rukolaine","doi":"10.1134/S1063784224060380","DOIUrl":null,"url":null,"abstract":"<p>The heat equation, based on Fourier’s law, is commonly used for description of heat conduction. However, Fourier’s law is valid under the assumption of local thermodynamic equilibrium, which is violated in very small dimensions and short timescales, and at low temperatures. As a replacement for Fourier’s law, many models have been proposed within the framework of various theories. In this paper we study the behavior of solutions to an initial value problem in 3D in the framework of the linearized ballistic-conductive (BC) model. As a result, an unphysical effect is detected when the temperature in the heat wave takes negative values.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 6","pages":"1765 - 1768"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224060380","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The heat equation, based on Fourier’s law, is commonly used for description of heat conduction. However, Fourier’s law is valid under the assumption of local thermodynamic equilibrium, which is violated in very small dimensions and short timescales, and at low temperatures. As a replacement for Fourier’s law, many models have been proposed within the framework of various theories. In this paper we study the behavior of solutions to an initial value problem in 3D in the framework of the linearized ballistic-conductive (BC) model. As a result, an unphysical effect is detected when the temperature in the heat wave takes negative values.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维空间热传导线性化弹道-导电模型的行为
基于傅立叶定律的热方程通常用于描述热传导。然而,傅立叶定律是在局部热力学平衡的假设条件下有效的,而在非常小的尺寸和短时标以及低温条件下,这一假设条件遭到了破坏。为了替代傅立叶定律,人们在各种理论框架内提出了许多模型。在本文中,我们研究了线性化弹道-导电(BC)模型框架内三维初值问题解的行为。结果发现,当热浪中的温度为负值时,会产生非物理效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
期刊最新文献
Damage Resistance of Corundum Treated with Abrasive and Contact-Free Processing Mathematical Modeling of the Main Characteristics of Cold Field and Thermal Field Electron Cathodes of Scanning Electron Microscopes in the Study of Biological Samples Control of Fluid Flow Movement in Porous Medium with NMR-Relaxometry Method Localization and Charge State of Metal Ions in Carbon Nanostructures of Europium Bis-Phthalocyanine Pyrolysed Derivatives Investigation of the Emission Spectrum of a Fast Capillary Discharge in the “Water Window” Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1