Kang Liu, Hao-ran Wang, Yong-can Chen, Hui Xie, Zhao-Wei Liu
{"title":"Comparison of DES and URANS: Estimation of fluctuating pressure from URANS simulations in stilling basins","authors":"Kang Liu, Hao-ran Wang, Yong-can Chen, Hui Xie, Zhao-Wei Liu","doi":"10.1007/s42241-024-0055-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducts a comparative analysis between detached eddy simulation (DES) and Unsteady Reynolds-averaged Navier-Stokes (URANS) models for simulating pressure fluctuations in a stilling basin, aiming to assess the URANS mode’s performance in modeling pressure fluctuation. The URANS model predicts accurately a smoother flow field and its time-average pressure, yet it underestimates the root mean square of pressure (RMSP) fluctuation, achieving approximately 70% of the results predicted by DES model on the bottom floor of the stilling basin. Compared with DES model’s results, which are in alignment with the Kolmogorov −5/3 law, the URANS model significantly overestimates low-frequency pulsations, particularly those below 0.1 Hz. We further propose a novel method for estimating the RMSP in the stilling basin using URANS model results, based on the establishment of a quantitative relationship between the RMSP, time-averaged pressure, and turbulent kinetic energy in the boundary layer. The proposed method closely aligns with DES results, showing a mere 15% error level. These findings offer vital insights for selecting appropriate turbulence models in hydraulic engineering and provide a valuable tool for engineers to estimate pressure fluctuation in stilling basins.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0055-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducts a comparative analysis between detached eddy simulation (DES) and Unsteady Reynolds-averaged Navier-Stokes (URANS) models for simulating pressure fluctuations in a stilling basin, aiming to assess the URANS mode’s performance in modeling pressure fluctuation. The URANS model predicts accurately a smoother flow field and its time-average pressure, yet it underestimates the root mean square of pressure (RMSP) fluctuation, achieving approximately 70% of the results predicted by DES model on the bottom floor of the stilling basin. Compared with DES model’s results, which are in alignment with the Kolmogorov −5/3 law, the URANS model significantly overestimates low-frequency pulsations, particularly those below 0.1 Hz. We further propose a novel method for estimating the RMSP in the stilling basin using URANS model results, based on the establishment of a quantitative relationship between the RMSP, time-averaged pressure, and turbulent kinetic energy in the boundary layer. The proposed method closely aligns with DES results, showing a mere 15% error level. These findings offer vital insights for selecting appropriate turbulence models in hydraulic engineering and provide a valuable tool for engineers to estimate pressure fluctuation in stilling basins.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.