Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements

Yu-Chen Lo
{"title":"Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements","authors":"Yu-Chen Lo","doi":"10.1007/s43674-024-00078-2","DOIUrl":null,"url":null,"abstract":"<div><p>Developing accurate and robust prognostic prediction for classifying the risks of acute lymphoblastic leukemia (ALL) relapse is critical for patient treatment management and survival. However, the lack of clinical samples and linearity assumption remains a significant clinical challenge for achieving high accuracy for single-cell prognostics. Here, we explore the use of non-linear machine learning models with ex vivo sample perturbation as a data augmentation strategy to improve ALL relapse prediction. We hypothesize that treating each sample with ex vivo perturbation can be viewed as independent measurements, thus increasing the number of available observations for machine learning. We show that ex vivo sample stimulation combined with non-linear machine learning significantly improves the performance of ALL risk stratification from limited single-cell proteomic data.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-024-00078-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing accurate and robust prognostic prediction for classifying the risks of acute lymphoblastic leukemia (ALL) relapse is critical for patient treatment management and survival. However, the lack of clinical samples and linearity assumption remains a significant clinical challenge for achieving high accuracy for single-cell prognostics. Here, we explore the use of non-linear machine learning models with ex vivo sample perturbation as a data augmentation strategy to improve ALL relapse prediction. We hypothesize that treating each sample with ex vivo perturbation can be viewed as independent measurements, thus increasing the number of available observations for machine learning. We show that ex vivo sample stimulation combined with non-linear machine learning significantly improves the performance of ALL risk stratification from limited single-cell proteomic data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有样本扰动的非线性机器学习从单细胞蛋白质组学测量中增强了白血病复发预后能力
为急性淋巴细胞白血病(ALL)复发风险分类开发准确、稳健的预后预测对患者的治疗管理和生存至关重要。然而,缺乏临床样本和线性假设仍然是实现单细胞高精度预后的重大临床挑战。在此,我们探索使用非线性机器学习模型和体内外样本扰动作为数据增强策略,以改善 ALL 复发预测。我们假设,用体内外扰动处理每个样本可被视为独立的测量,从而增加机器学习的可用观测数据。我们的研究表明,体内外样本刺激与非线性机器学习相结合,能显著提高从有限的单细胞蛋白质组数据中进行 ALL 风险分层的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1