Power data analysis and mining technology in smart grid

Q2 Energy Energy Informatics Pub Date : 2024-09-30 DOI:10.1186/s42162-024-00392-6
Xinjia Li, Zixu Zhu, Chongchao Zhang, Yangrui Zhang, Mengjia Liu, Liming Wang
{"title":"Power data analysis and mining technology in smart grid","authors":"Xinjia Li,&nbsp;Zixu Zhu,&nbsp;Chongchao Zhang,&nbsp;Yangrui Zhang,&nbsp;Mengjia Liu,&nbsp;Liming Wang","doi":"10.1186/s42162-024-00392-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a smart grid model named “GridOptiPredict”, which aims to achieve efficient analysis and processing of power system data through deep fusion of deep learning and graph neural network, so as to improve the intelligent level and overall efficiency of power grid operation. The model integrates three core functions of load forecasting, power grid state sensing and resource optimization into one, forming a closely connected and complementary framework. Through carefully designed experimental scheme, the practical value and effectiveness of “Grid OptiPredict” model are fully verified from three aspects: accuracy of load forecasting, sensitivity of power grid state sensing and efficiency of resource allocation strategy. Experimental results show that the model has significant advantages in prediction accuracy, model stability and robustness, resource optimization, security, information security, social and economic benefits and user experience.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00392-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00392-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a smart grid model named “GridOptiPredict”, which aims to achieve efficient analysis and processing of power system data through deep fusion of deep learning and graph neural network, so as to improve the intelligent level and overall efficiency of power grid operation. The model integrates three core functions of load forecasting, power grid state sensing and resource optimization into one, forming a closely connected and complementary framework. Through carefully designed experimental scheme, the practical value and effectiveness of “Grid OptiPredict” model are fully verified from three aspects: accuracy of load forecasting, sensitivity of power grid state sensing and efficiency of resource allocation strategy. Experimental results show that the model has significant advantages in prediction accuracy, model stability and robustness, resource optimization, security, information security, social and economic benefits and user experience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网中的电力数据分析与挖掘技术
本研究提出了一种名为 "GridOptiPredict "的智能电网模型,旨在通过深度学习和图神经网络的深度融合,实现对电力系统数据的高效分析和处理,从而提高电网运行的智能化水平和整体效率。该模型集负荷预测、电网状态感知和资源优化三大核心功能于一体,形成了一个紧密联系、互为补充的框架。通过精心设计的实验方案,从负荷预测的准确性、电网状态感知的灵敏性和资源配置策略的高效性三个方面充分验证了 "电网优化预测 "模型的实用价值和有效性。实验结果表明,该模型在预测精度、模型稳定性和鲁棒性、资源优化、安全性、信息安全、社会经济效益和用户体验等方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1