Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2024-09-30 DOI:10.1007/s10404-024-02764-6
Poly Karmakar, Sanatan Das, Rabindra Nath Jana, Oluwole Daniel Makinde
{"title":"Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation","authors":"Poly Karmakar,&nbsp;Sanatan Das,&nbsp;Rabindra Nath Jana,&nbsp;Oluwole Daniel Makinde","doi":"10.1007/s10404-024-02764-6","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of external magnetic or electric fields, particularly through a Riga setup, markedly enhances flow dynamics by mitigating frictional forces and turbulent fluctuations, thereby facilitating superior flow management. Such improvements are especially beneficial in optimizing the operational efficiency of machinery and turbines. Our research focuses on the behavior of a weakly ionized fluid within a porous, infinitely extended Riga channel (or electromagnetic channel) set in a rotational framework affected by Hall and ion-slip electric fields. This model integrates the cumulative repulsions of an abruptly applied pressure gradient, electromagnetic forces, electromagnetic radiation, and chemical reactions. The physical configuration of the model features a stationary right wall and a left wall subjected to transverse vibrations, establishing a complex flow environment. This scenario is analytically modeled using time-dependent partial differential equations, with the Laplace transform (LT) method applied to achieve a closed-form solution for the flow controlling equations. Through detailed graphical and tabular data, the study explores the impact of various pivotal parameters on the model’s flow traits and quantities. Our results indicate that an upswing in the modified Hartmann number significantly enhances fluid flow within the channel, with the primary flow component showing marked improvement as Hall and ion-slip parameters amplify, and secondary flow component diminishing. Additionally, species concentration lowers with higher Schmidt numbers and chemical reaction rates, while an expanded modified Hartmann number correlate with enhanced shear stresses at the channel wall. Moreover, an elevation in the radiation parameter reduces the rate of heat transfer (RHT) at the vibrating wall, whereas RHT at the stationary wall improves. This study has profound implications across several fields, notably in fusion energy research, spacecraft propulsion systems, satellite operations, aerospace engineering, and advanced manufacturing technologies.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02764-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of external magnetic or electric fields, particularly through a Riga setup, markedly enhances flow dynamics by mitigating frictional forces and turbulent fluctuations, thereby facilitating superior flow management. Such improvements are especially beneficial in optimizing the operational efficiency of machinery and turbines. Our research focuses on the behavior of a weakly ionized fluid within a porous, infinitely extended Riga channel (or electromagnetic channel) set in a rotational framework affected by Hall and ion-slip electric fields. This model integrates the cumulative repulsions of an abruptly applied pressure gradient, electromagnetic forces, electromagnetic radiation, and chemical reactions. The physical configuration of the model features a stationary right wall and a left wall subjected to transverse vibrations, establishing a complex flow environment. This scenario is analytically modeled using time-dependent partial differential equations, with the Laplace transform (LT) method applied to achieve a closed-form solution for the flow controlling equations. Through detailed graphical and tabular data, the study explores the impact of various pivotal parameters on the model’s flow traits and quantities. Our results indicate that an upswing in the modified Hartmann number significantly enhances fluid flow within the channel, with the primary flow component showing marked improvement as Hall and ion-slip parameters amplify, and secondary flow component diminishing. Additionally, species concentration lowers with higher Schmidt numbers and chemical reaction rates, while an expanded modified Hartmann number correlate with enhanced shear stresses at the channel wall. Moreover, an elevation in the radiation parameter reduces the rate of heat transfer (RHT) at the vibrating wall, whereas RHT at the stationary wall improves. This study has profound implications across several fields, notably in fusion energy research, spacecraft propulsion systems, satellite operations, aerospace engineering, and advanced manufacturing technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
振动里加通道中的弱电离流体在强烈电磁旋转下的动态响应
利用外部磁场或电场,特别是通过里加装置,可通过减轻摩擦力和湍流波动显著增强流动动力学,从而促进卓越的流动管理。这种改进尤其有利于优化机械和涡轮机的运行效率。我们的研究重点是多孔、无限延伸的里加通道(或电磁通道)中弱电离流体的行为,该通道设置在受霍尔电场和离子滑动电场影响的旋转框架中。该模型整合了突然施加的压力梯度、电磁力、电磁辐射和化学反应的累积斥力。模型的物理结构包括静止的右壁和受到横向振动的左壁,从而建立了一个复杂的流动环境。这种情况使用随时间变化的偏微分方程进行分析建模,并应用拉普拉斯变换(LT)方法实现流动控制方程的闭式求解。研究通过详细的图形和表格数据,探讨了各种关键参数对模型流量特征和数量的影响。研究结果表明,修正哈特曼数的上升会显著增强通道内的流体流动,随着霍尔参数和离子滑动参数的放大,主要流动成分会得到明显改善,而次要流动成分则会减弱。此外,物种浓度随着施密特数和化学反应速率的增加而降低,而修正哈特曼数的增加则与通道壁剪应力的增加有关。此外,辐射参数的升高降低了振动壁的传热速率(RHT),而静止壁的传热速率则有所提高。这项研究对多个领域都有深远影响,特别是在聚变能研究、航天器推进系统、卫星运行、航空航天工程和先进制造技术方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems Exploring fluid flow in microchannels with branching and variable constrictions Variance-reduction kinetic simulation for characterization of surface and corner effects in low-speed rarefied gas flows through long micro-ducts Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1