Diego Morais Junqueira, Guilherme Ferreira Gomes, Márcio Eduardo Silveira, Antonio Carlos Ancelotti Jr.
{"title":"Influence of the insertion of shape memory wires in composite materials on impact response","authors":"Diego Morais Junqueira, Guilherme Ferreira Gomes, Márcio Eduardo Silveira, Antonio Carlos Ancelotti Jr.","doi":"10.1007/s43452-024-01049-7","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, the quest for high-performance materials—those that combine low weight with high mechanical strength—has intensified. A promising solution involves composites reinforced with fiber and a polymeric matrix. However, these composite materials often exhibit deficiencies in crashworthiness. To address this issue, we investigated the incorporation of shape memory alloys, specifically nickel–titanium (NiTi), into the laminate structure. This study aimed to develop an equation, using a design of experiments approach, capable of predicting the energy absorption capacity of fiberglass and epoxy resin matrix composites upon impact, with integrated NiTi wires. Additionally, we proposed a model through numerical simulation using the finite element method to correlate with experimental analyses, thereby establishing a reliable model for future research. We selected the appropriate NiTi alloy (martensitic or superelastic) for the impact specimens through a full factorial design and dynamic mechanical analysis. After choosing the statistically superior superelastic wire, we manufactured test specimens using vacuum assisted resin transfer molding. These specimens, designed with three variables (diameter, spacing, and position in the laminate), followed a fractional factorial design. The drop-weight impact tests, conducted according to the ASTM D7136 standard, demonstrated increased energy absorption when NiTi wire was included in the composite. A non-linear numerical simulation (dynamic analysis) was performed, and its results—showing an excellent correlation with experimental data (above 95%)—validated the model.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01049-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, the quest for high-performance materials—those that combine low weight with high mechanical strength—has intensified. A promising solution involves composites reinforced with fiber and a polymeric matrix. However, these composite materials often exhibit deficiencies in crashworthiness. To address this issue, we investigated the incorporation of shape memory alloys, specifically nickel–titanium (NiTi), into the laminate structure. This study aimed to develop an equation, using a design of experiments approach, capable of predicting the energy absorption capacity of fiberglass and epoxy resin matrix composites upon impact, with integrated NiTi wires. Additionally, we proposed a model through numerical simulation using the finite element method to correlate with experimental analyses, thereby establishing a reliable model for future research. We selected the appropriate NiTi alloy (martensitic or superelastic) for the impact specimens through a full factorial design and dynamic mechanical analysis. After choosing the statistically superior superelastic wire, we manufactured test specimens using vacuum assisted resin transfer molding. These specimens, designed with three variables (diameter, spacing, and position in the laminate), followed a fractional factorial design. The drop-weight impact tests, conducted according to the ASTM D7136 standard, demonstrated increased energy absorption when NiTi wire was included in the composite. A non-linear numerical simulation (dynamic analysis) was performed, and its results—showing an excellent correlation with experimental data (above 95%)—validated the model.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.