Fast low-temperature irradiation creep driven by athermal defect dynamics

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-10-09 DOI:10.1038/s43246-024-00655-5
Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev
{"title":"Fast low-temperature irradiation creep driven by athermal defect dynamics","authors":"Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev","doi":"10.1038/s43246-024-00655-5","DOIUrl":null,"url":null,"abstract":"The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. The creep behavior of actively cooled alloys exposed to neutron irradiation in fusion reactors is expected to critically affect the operation of reactor components. Here, experiments and simulations of a 16 μm thick tungsten wire exposed to low-temperature irradiation reveal stress relaxation rates far exceeding those associated with thermal creep.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00655-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00655-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. The creep behavior of actively cooled alloys exposed to neutron irradiation in fusion reactors is expected to critically affect the operation of reactor components. Here, experiments and simulations of a 16 μm thick tungsten wire exposed to low-temperature irradiation reveal stress relaxation rates far exceeding those associated with thermal creep.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热缺陷动力学驱动的快速低温辐照蠕变
在聚变反应堆设计中,反应堆部件出现高应力集中仍然是一个难以解决的现象。在这里,我们观察到了一种非线性高剂量辐射介导的微结构演化效应,并建立了定量模型,这种效应有助于在最具挑战性的低温极限下实现快速应力松弛。我们对暴露在高能离子束下的拉伸钨丝进行了现场观测,结果表明,高达 2 GPa 的内应力在几分钟内就会松弛,松弛的程度和时间尺度可通过原子模拟的无参数多尺度模型准确预测。与传统的辐射蠕变概念不同,这种效应源于纳米级晶体缺陷的自组织,通过热凝聚成扩展的极化位错网络,从而补偿并减轻了外部应力。在聚变反应堆中,暴露于中子辐照的活性冷却合金的蠕变行为预计将严重影响反应堆部件的运行 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials Machine vision system by optically tunable 2D magnetic junctions Unraveling the origin of conductivity change in Co-doped FeRh phase transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1