Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-10-09 DOI:10.1038/s43246-024-00657-3
Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa
{"title":"Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework","authors":"Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa","doi":"10.1038/s43246-024-00657-3","DOIUrl":null,"url":null,"abstract":"Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of $${{\\rm{Zn}}}{({{\\rm{DMSO}}})}_{6}^{2+}$$ cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs. Bulk crystal growth of metal-organic frameworks remains a challenge. Here, a single crystal of a metal-organic framework is grown homoepitaxially in the centimeter range, assisted by the ionic nature of the anionic framework with cationic 1D molecular fillers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00657-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00657-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of $${{\rm{Zn}}}{({{\rm{DMSO}}})}_{6}^{2+}$$ cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs. Bulk crystal growth of metal-organic frameworks remains a challenge. Here, a single crystal of a metal-organic framework is grown homoepitaxially in the centimeter range, assisted by the ionic nature of the anionic framework with cationic 1D molecular fillers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于金属有机框架可扩展单晶外延的主客体电荷转移
生长大晶体的方法为材料科学和技术奠定了基础。在这里,我们展示了一种由锌、醋酸根离子和对苯二甲酸根离子构建的金属有机框架(MOF)的单晶同源外延,该框架的一维(1D)通道中封装了八面体二甲基亚砜(DMSO)锌络阳离子阵列。三维框架由二维锌-对苯二甲酸盐方格组成,阴离子醋酸盐柱通过二原子锌节点相互连接。阴离子框架的电荷由填充框架每第二个一维通道的 $${\{rm{Zn}}{({{\{rm{DMSO}})}_{6}^{2+}$ 阳离子一维阵列中和。实验证明,通过可重复和可扩展的外延,这种电荷转移 MOF 的正方体立方体可以逐步增长到厘米大小。这种无尺寸限制的连续生长可归因于带有阳离子一维分子填料的阴离子框架的离子性质。这些发现为 MOFs 体晶的外延生长铺平了道路。金属有机框架的块状晶体生长仍然是一项挑战。在这里,利用带有阳离子一维分子填料的阴离子框架的离子性质,在厘米范围内同外延生长出了金属有机框架的单晶体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials Machine vision system by optically tunable 2D magnetic junctions Unraveling the origin of conductivity change in Co-doped FeRh phase transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1