Self-forming Na3P/Na2O interphase on a novel biphasic Na3Zr2Si2PO12/Na3PO4 solid electrolyte for long-cycling solid-state Na-metal batteries

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-12 DOI:10.1016/j.ensm.2024.103831
Le Xiang, Yue Gao, Yifei Ding, Xiutao Li, Daochuan Jiang, Chuanqiang Wu, Xiaowen Zhan, Lingyun Zhu
{"title":"Self-forming Na3P/Na2O interphase on a novel biphasic Na3Zr2Si2PO12/Na3PO4 solid electrolyte for long-cycling solid-state Na-metal batteries","authors":"Le Xiang,&nbsp;Yue Gao,&nbsp;Yifei Ding,&nbsp;Xiutao Li,&nbsp;Daochuan Jiang,&nbsp;Chuanqiang Wu,&nbsp;Xiaowen Zhan,&nbsp;Lingyun Zhu","doi":"10.1016/j.ensm.2024.103831","DOIUrl":null,"url":null,"abstract":"<div><div>A novel biphasic Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub>/Na<sub>3</sub>PO<sub>4</sub> solid electrolyte is proposed to effectively address critical anode interface challenges for solid-state Na-metal batteries (SSSMBs). The Na<sub>3</sub>PO<sub>4</sub> phase, at an optimal composition of ∼20 mol%, transforms the interface chemistry throughout the NZSP electrolyte, which results in dense electrolytes with high Young's modulus, rapid ion transport (6.2 × 10<sup>−4</sup> S cm<sup>-1</sup>) at low activation barrier (0.19 eV), negligible electronic conductivity, and excellent sodiophilicity. The AIMD/DFT calculations and XPS analysis reveal a self-formed, (electro)chemically stable mixed Na<sup>+</sup>/electron-conducting interphase, comprising Na<sub>3</sub>P and Na<sub>2</sub>O, at the Na anode interface. The interphase not only homogenizes the Na<sup>+</sup> flux distribution and accelerates the interfacial charge transport, but prevents continuous interfacial reactions, thereby stabilizing the anode interface against dendrite formation. Benefiting from the low-impedance, dendrite-free anode interface, Na symmetric cells demonstrate a low interface resistance of 12.7 Ω cm<sup>2</sup> and exceptional cyclability of 3000 h. Additionally, full cells with Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathodes achieve 93 % capacity retention after 550 cycles at 0.5 C. This research comprehensively elucidates and leverages the critical advantages of Na<sub>3</sub>PO<sub>4</sub> in enhancing the bulk and interface properties of Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> solid electrolytes. The design strategy of biphasic solid electrolytes presented here offers new insights into the developing high-performance solid electrolytes for advanced SSSMBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103831"},"PeriodicalIF":20.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel biphasic Na3Zr2Si2PO12/Na3PO4 solid electrolyte is proposed to effectively address critical anode interface challenges for solid-state Na-metal batteries (SSSMBs). The Na3PO4 phase, at an optimal composition of ∼20 mol%, transforms the interface chemistry throughout the NZSP electrolyte, which results in dense electrolytes with high Young's modulus, rapid ion transport (6.2 × 10−4 S cm-1) at low activation barrier (0.19 eV), negligible electronic conductivity, and excellent sodiophilicity. The AIMD/DFT calculations and XPS analysis reveal a self-formed, (electro)chemically stable mixed Na+/electron-conducting interphase, comprising Na3P and Na2O, at the Na anode interface. The interphase not only homogenizes the Na+ flux distribution and accelerates the interfacial charge transport, but prevents continuous interfacial reactions, thereby stabilizing the anode interface against dendrite formation. Benefiting from the low-impedance, dendrite-free anode interface, Na symmetric cells demonstrate a low interface resistance of 12.7 Ω cm2 and exceptional cyclability of 3000 h. Additionally, full cells with Na3V2(PO4)3 cathodes achieve 93 % capacity retention after 550 cycles at 0.5 C. This research comprehensively elucidates and leverages the critical advantages of Na3PO4 in enhancing the bulk and interface properties of Na3Zr2Si2PO12 solid electrolytes. The design strategy of biphasic solid electrolytes presented here offers new insights into the developing high-performance solid electrolytes for advanced SSSMBs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在新型双相 Na3Zr2Si2PO12/Na3PO4 固体电解质上自形成 Na3P/Na2O 相,用于长循环固态钠金属电池
本文提出了一种新型双相 Na3Zr2Si2PO12/Na3PO4 固体电解质,可有效解决固态钠金属电池(SSSMB)阳极界面的关键难题。最佳成分为 ∼20 mol% 的 Na3PO4 相改变了整个 NZSP 电解质的界面化学性质,使电解质致密、杨氏模量高、活化势垒低(0.19 eV)时离子传输速度快(6.2 × 10-4 S cm-1)、电子导电性可忽略不计以及亲钠性极佳。AIMD/DFT 计算和 XPS 分析表明,在 Na 阳极界面上有一个自形成的、(电)化学性质稳定的 Na+/ 电子导电混合相,由 Na3P 和 Na2O 组成。该中间相不仅均匀了 Na+ 通量分布,加速了界面电荷传输,而且阻止了持续的界面反应,从而稳定了阳极界面,防止树枝状晶粒的形成。得益于低阻抗、无树枝状突起的阳极界面,Na 对称电池的界面电阻低至 12.7 Ω cm2,并具有 3000 小时的超强循环能力。此外,采用 Na3V2(PO4)3 阴极的全电池在 0.5 摄氏度条件下循环 550 次后,容量保持率达到 93%。这项研究全面阐明并利用了 Na3PO4 在增强 Na3Zr2Si2PO12 固体电解质的体积和界面特性方面的关键优势。本文介绍的双相固体电解质设计策略为开发用于先进 SSSMB 的高性能固体电解质提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Gradient 4f-2p-3d orbital coupling activates interfacial asymmetric Co-O-Ce sites towards enhanced bidirectional catalysis in Li-CO2 batteries Lattice-Oxygen-Driven Selective Oxidation Strategy for Stable Argyrodite Solid-State Lithium Metal Batteries The Significant In-Plane Heterogeneity of Cathode Performance in Aged Lithium Iron Phosphate Batteries: Modeling and Mitigation Method Recent advances in cement-based electrolyte/separator and electrodes: fabrication, mechanisms, and performance of cementitious-based supercapacitors - a review Fluorinated fluid cooling to address thermal safety issues in lithium-ion batteries with radicals capturing and boiling heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1