Mean Estimation of Numerical Data Under (ϵ,δ) -Utility-Optimized Local Differential Privacy

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-10-11 DOI:10.1109/TIFS.2024.3478823
Yue Zhang;Youwen Zhu;Shaowei Wang;Xiaohua Huang
{"title":"Mean Estimation of Numerical Data Under (ϵ,δ) -Utility-Optimized Local Differential Privacy","authors":"Yue Zhang;Youwen Zhu;Shaowei Wang;Xiaohua Huang","doi":"10.1109/TIFS.2024.3478823","DOIUrl":null,"url":null,"abstract":"Utility-optimized local differential privacy (ULDP) considers input domain including non-sensitive values which reduces utility loss by leaking some non-sensitive values, without lowering protection to any sensitive one compared with local differential privacy (LDP). The existing ULDP mechanisms are designed under \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-ULDP which preserve sensitive values under \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-LDP. Nevertheless, it is still challenging to achieve \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-ULDP. In this paper, we consider mean aggregation in \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-ULDP, where sensitive values are protected under \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-LDP. Specifically, we first propose One-Bit perturbation Mechanism (OBM) for unbiased mean estimation under \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-LDP and then obtain optimal OBM by minimizing its worst-case error. In OBM, each output is a 1-bit value, and it thus is highly communication-efficient. Second, based on OBM, we design an unbiased mean estimation mechanism in \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-ULDP, Utility-optimized OBM (UOBM), where sensitive values are strictly protected under \n<inline-formula> <tex-math>$(\\epsilon ,\\delta)$ </tex-math></inline-formula>\n-LDP while non-sensitive ones could be disclosed to achieve higher utility. Further, we extend UOBM to the personalized scene where each user has specific privacy budget and sensitive range. Additionally, we theoretically and experimentally compare the proposed mechanisms with existing ones. The results show OBM outperforms existing mechanisms in utility, though its output is just a 1-bit value. UOBM can dramatically decrease the estimation error, compared with OBM.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"19 ","pages":"9656-9669"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10714480/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Utility-optimized local differential privacy (ULDP) considers input domain including non-sensitive values which reduces utility loss by leaking some non-sensitive values, without lowering protection to any sensitive one compared with local differential privacy (LDP). The existing ULDP mechanisms are designed under $\epsilon $ -ULDP which preserve sensitive values under $\epsilon $ -LDP. Nevertheless, it is still challenging to achieve $(\epsilon ,\delta)$ -ULDP. In this paper, we consider mean aggregation in $(\epsilon ,\delta)$ -ULDP, where sensitive values are protected under $(\epsilon ,\delta)$ -LDP. Specifically, we first propose One-Bit perturbation Mechanism (OBM) for unbiased mean estimation under $(\epsilon ,\delta)$ -LDP and then obtain optimal OBM by minimizing its worst-case error. In OBM, each output is a 1-bit value, and it thus is highly communication-efficient. Second, based on OBM, we design an unbiased mean estimation mechanism in $(\epsilon ,\delta)$ -ULDP, Utility-optimized OBM (UOBM), where sensitive values are strictly protected under $(\epsilon ,\delta)$ -LDP while non-sensitive ones could be disclosed to achieve higher utility. Further, we extend UOBM to the personalized scene where each user has specific privacy budget and sensitive range. Additionally, we theoretically and experimentally compare the proposed mechanisms with existing ones. The results show OBM outperforms existing mechanisms in utility, though its output is just a 1-bit value. UOBM can dramatically decrease the estimation error, compared with OBM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在(ϵ, δ)效用优化的局部差分隐私条件下的数值数据均值估计
效用优化的局部差分隐私(ULDP)考虑了包括非敏感值在内的输入域,与局部差分隐私(LDP)相比,它减少了因泄漏一些非敏感值而造成的效用损失,同时又不会降低对任何敏感值的保护。现有的 ULDP 机制是在 $\epsilon $ -ULDP 下设计的,而在 $\epsilon $ -LDP 下保留了敏感值。然而,要实现 $(\epsilon ,\delta)$ -ULDP,仍然具有挑战性。本文考虑了 $(\epsilon ,\delta)$ -ULDP 中的均值聚合,其中敏感值在 $(\epsilon ,\delta)$ -LDP 下受到保护。具体来说,我们首先提出了在 $(\epsilon ,\delta)$ -LDP 条件下用于无偏均值估计的一比特扰动机制(OBM),然后通过最小化其最坏情况误差获得最优 OBM。在 OBM 中,每个输出都是 1 位值,因此具有很高的通信效率。其次,基于 OBM,我们在 $(\epsilon ,\delta)$ -ULDP 中设计了一种无偏均值估计机制--效用优化的 OBM(UOBM),其中敏感值在 $(\epsilon ,\delta)$ -LDP 下受到严格保护,而非敏感值则可以公开以获得更高的效用。此外,我们还将 UOBM 扩展到个性化场景,即每个用户都有特定的隐私预算和敏感范围。此外,我们还从理论上和实验上将所提出的机制与现有机制进行了比较。结果表明,尽管 OBM 的输出只是一个 1 位值,但其效用优于现有机制。与 OBM 相比,UOBM 可以显著降低估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Attackers Are Not the Same! Unveiling the Impact of Feature Distribution on Label Inference Attacks Backdoor Online Tracing With Evolving Graphs LHADRO: A Robust Control Framework for Autonomous Vehicles Under Cyber-Physical Attacks Towards Mobile Palmprint Recognition via Multi-view Hierarchical Graph Learning Succinct Hash-based Arbitrary-Range Proofs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1