AI‐assisted Field Plate Design of GaN HEMT Device

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-10-12 DOI:10.1002/adts.202400347
Xiaofeng Xiang, Rafid Hassan Palash, Eiji Yagyu, Scott T. Dunham, Koon Hoo Teo, Nadim Chowdhury
{"title":"AI‐assisted Field Plate Design of GaN HEMT Device","authors":"Xiaofeng Xiang, Rafid Hassan Palash, Eiji Yagyu, Scott T. Dunham, Koon Hoo Teo, Nadim Chowdhury","doi":"10.1002/adts.202400347","DOIUrl":null,"url":null,"abstract":"GaN High Electron Mobility Transistors (HEMTs) plays a vital role in high‐power and high‐frequency electronics. Meeting the demanding performance requirements of these devices without compromising reliability is a challenging endeavor. Field Plates are employed to redistribute the electric field, minimizing the risk of device failure, especially in high‐voltage operations. While machine learning is applied to GaN device design, its application to field plate structures, known for their geometric complexity, is limited. This study introduces a novel approach to streamlining the field plate design process. It transforms complex 2D field plate structures into a concise feature space, reducing data requirements. A machine learning‐assisted design framework is proposed to optimize field plate structures and perform inverse design. This approach is not exclusive to the design of GaN HEMTs and can be extended to various semiconductor devices with field plate structures. The framework combines technology computer‐aided design (TCAD), machine learning, and optimization, streamlining the design process.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400347","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

GaN High Electron Mobility Transistors (HEMTs) plays a vital role in high‐power and high‐frequency electronics. Meeting the demanding performance requirements of these devices without compromising reliability is a challenging endeavor. Field Plates are employed to redistribute the electric field, minimizing the risk of device failure, especially in high‐voltage operations. While machine learning is applied to GaN device design, its application to field plate structures, known for their geometric complexity, is limited. This study introduces a novel approach to streamlining the field plate design process. It transforms complex 2D field plate structures into a concise feature space, reducing data requirements. A machine learning‐assisted design framework is proposed to optimize field plate structures and perform inverse design. This approach is not exclusive to the design of GaN HEMTs and can be extended to various semiconductor devices with field plate structures. The framework combines technology computer‐aided design (TCAD), machine learning, and optimization, streamlining the design process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaN HEMT 器件的人工智能辅助场板设计
氮化镓高电子迁移率晶体管(HEMT)在大功率和高频电子器件中发挥着至关重要的作用。要在不影响可靠性的前提下满足这些器件苛刻的性能要求,是一项极具挑战性的工作。场板用于重新分配电场,最大限度地降低器件失效的风险,尤其是在高压操作中。虽然机器学习已被应用于氮化镓器件设计,但其在以几何复杂性著称的场板结构上的应用还很有限。本研究介绍了一种简化场板设计流程的新方法。它将复杂的二维场板结构转化为简洁的特征空间,从而降低了数据要求。研究提出了一种机器学习辅助设计框架,用于优化场板结构和执行逆向设计。这种方法并不局限于氮化镓 HEMT 的设计,还可以扩展到各种具有场板结构的半导体器件。该框架结合了技术计算机辅助设计 (TCAD)、机器学习和优化,简化了设计流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
A Physics-Driven GraphSAGE Method for Physical Field Simulations Described by Partial Differential Equations Ferrocene Appended Linear Chromophores for Aggregation-Induced Emission (AIE) and Nonlinear Optics (NLO): Combined Experimental and Theoretical Studies Role of Ag Nanowires: MXenes in Optimizing Flexible, Semitransparent Bifacial Inverted Perovskite Solar Cells for Building-Integrated Photovoltaics: A SCAPS-1D Modeling Approach Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1