Xiaofeng Xiang, Rafid Hassan Palash, Eiji Yagyu, Scott T. Dunham, Koon Hoo Teo, Nadim Chowdhury
{"title":"AI‐assisted Field Plate Design of GaN HEMT Device","authors":"Xiaofeng Xiang, Rafid Hassan Palash, Eiji Yagyu, Scott T. Dunham, Koon Hoo Teo, Nadim Chowdhury","doi":"10.1002/adts.202400347","DOIUrl":null,"url":null,"abstract":"GaN High Electron Mobility Transistors (HEMTs) plays a vital role in high‐power and high‐frequency electronics. Meeting the demanding performance requirements of these devices without compromising reliability is a challenging endeavor. Field Plates are employed to redistribute the electric field, minimizing the risk of device failure, especially in high‐voltage operations. While machine learning is applied to GaN device design, its application to field plate structures, known for their geometric complexity, is limited. This study introduces a novel approach to streamlining the field plate design process. It transforms complex 2D field plate structures into a concise feature space, reducing data requirements. A machine learning‐assisted design framework is proposed to optimize field plate structures and perform inverse design. This approach is not exclusive to the design of GaN HEMTs and can be extended to various semiconductor devices with field plate structures. The framework combines technology computer‐aided design (TCAD), machine learning, and optimization, streamlining the design process.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400347","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
GaN High Electron Mobility Transistors (HEMTs) plays a vital role in high‐power and high‐frequency electronics. Meeting the demanding performance requirements of these devices without compromising reliability is a challenging endeavor. Field Plates are employed to redistribute the electric field, minimizing the risk of device failure, especially in high‐voltage operations. While machine learning is applied to GaN device design, its application to field plate structures, known for their geometric complexity, is limited. This study introduces a novel approach to streamlining the field plate design process. It transforms complex 2D field plate structures into a concise feature space, reducing data requirements. A machine learning‐assisted design framework is proposed to optimize field plate structures and perform inverse design. This approach is not exclusive to the design of GaN HEMTs and can be extended to various semiconductor devices with field plate structures. The framework combines technology computer‐aided design (TCAD), machine learning, and optimization, streamlining the design process.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics