Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-12 DOI:10.1002/smll.202407679
Yueji Wu, Han Lin, Qiqi Mao, Hongjie Yu, Kai Deng, Jianguo Wang, Liang Wang, Ziqiang Wang, Hongjing Wang
{"title":"Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production","authors":"Yueji Wu, Han Lin, Qiqi Mao, Hongjie Yu, Kai Deng, Jianguo Wang, Liang Wang, Ziqiang Wang, Hongjing Wang","doi":"10.1002/smll.202407679","DOIUrl":null,"url":null,"abstract":"The electrochemical C─N coupling of carbon dioxide (CO<sub>2</sub>) and nitrate(NO<sub>3</sub><sup>-</sup>) is an alternative strategy to the traditional high−energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (<i>a</i>-Cu<sub>0.1</sub>CoB<sub>x</sub> metallene) is designed for urea synthesis via electrochemical C─N coupling. The <i>a</i>-Cu<sub>0.1</sub>CoB<sub>x</sub> metallene can drive electrocatalytic C─N coupling of CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> for urea synthesis in CO<sub>2</sub>-saturated 0.1 <span>m</span> KNO<sub>3</sub> electrolyte, with 27.7% of FE and 312 µg h<sup>−1</sup> mg<sup>−1</sup><sub>cat.</sub> of yield at −0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the C─N coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through C─N coupling.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical C─N coupling of carbon dioxide (CO2) and nitrate(NO3-) is an alternative strategy to the traditional high−energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (a-Cu0.1CoBx metallene) is designed for urea synthesis via electrochemical C─N coupling. The a-Cu0.1CoBx metallene can drive electrocatalytic C─N coupling of CO2 and NO3 for urea synthesis in CO2-saturated 0.1 m KNO3 electrolyte, with 27.7% of FE and 312 µg h−1 mg−1cat. of yield at −0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the C─N coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through C─N coupling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非晶钴金属硼化物上的痕量铜诱导低 C─N 耦合屏障,促进电化学尿素生产
二氧化碳(CO2)和硝酸盐(NO3-)的电化学 C─N 偶联是尿素合成传统高能耗工业途径的替代策略,迫切需要设计高效催化剂以实现高产率和法拉第效率(FE)。本文设计了非晶态低含量铜掺杂钴茂金属硼化物(a-Cu0.1CoBx metallene),用于通过电化学 C─N 偶联合成尿素。在二氧化碳饱和的 0.1 m KNO3 电解质中,a-Cu0.1CoBx 茂金属能驱动 CO2 和 NO3- 的电催化 C─N 偶联合成尿素,在-0.5 V 时的 FE 为 27.7%,产率为 312 µg h-1 mg-1cat.,并且具有优异的循环稳定性。原位傅立叶变换红外光谱和理论计算显示,Cu、Co 和 B 之间的电子效应导致 Cu 和 Co 成为双活性位点,促进了反应物的吸附。此外,引入的痕量 Cu 降低了 C─N 偶联的反应能垒,从而促进了尿素的合成。这项工作为优化 Co 基金属烯通过 C─N 偶联电合成尿素提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Nanoporous Submicron Gold Particles Enable Nanoparticle-Based Localization Optoacoustic Tomography (nanoLOT) 11.88% Efficient Flexible Ag-Free CZTSSe Solar Cell: Spontaneously Tailoring the Alkali Metal Level Generating Immunological Memory Against Cancer by Camouflaging Gold‐Based Photothermal Nanoparticles in NIR‐II Biowindow for Mimicking T‐Cells Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production Partially Amorphous Ru-Doped CoSe Nanoparticles with Optimized Intermediates Adsorption for Highly Efficient Sulfur Oxidation Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1