Duofei Hu , Shiqi Liu , Liang Qi , Jinsong Liang , Guangming Zhang
{"title":"A critical review on ultrasound-assisted adsorption and desorption technology: Mechanisms, influencing factors, applications, and prospects","authors":"Duofei Hu , Shiqi Liu , Liang Qi , Jinsong Liang , Guangming Zhang","doi":"10.1016/j.jece.2024.114307","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental and resource issues are major challenges currently facing humanity. The cost-effective management of pollution and the recycling of resources have long been hot topics. Adsorption and desorption technologies, as mature and commercialized methods, have been widely applied on a large scale, and their mechanisms have been thoroughly investigated. Meanwhile, based on the unique properties of ultrasound, ultrasound technology, widely used in pharmaceuticals and materials synthesis, has shown exceptional mass transfer capabilities in adsorption and desorption, thereby greatly enhancing the performance of these two technologies. However, the mechanisms related to the combination of ultrasound with adsorption and desorption technology have not yet been thoroughly summarized. Therefore, the key aims of this review are to (a) explain the intrinsic mechanisms of ultrasound-assisted adsorption and desorption systems, (b) discuss the factors affecting adsorption and desorption systems, (c) provide examples of the application of ultrasound in adsorption and desorption, and (d) offer our perspectives to promote the development of technologies in the fields of adsorption and desorption, ultimately achieving efficient resource recycling. Finally, ultrasound can significantly reduce the time required to reach adsorption equilibrium and increase adsorption capacity by accelerating mass transfer and modifying adsorbents. In the field of desorption, ultrasound, through its intense sonochemical effects, can accelerate desorption processes, enhance the recovery rate of valuable elements, and improve the removal of pollutants.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114307"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724024382","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental and resource issues are major challenges currently facing humanity. The cost-effective management of pollution and the recycling of resources have long been hot topics. Adsorption and desorption technologies, as mature and commercialized methods, have been widely applied on a large scale, and their mechanisms have been thoroughly investigated. Meanwhile, based on the unique properties of ultrasound, ultrasound technology, widely used in pharmaceuticals and materials synthesis, has shown exceptional mass transfer capabilities in adsorption and desorption, thereby greatly enhancing the performance of these two technologies. However, the mechanisms related to the combination of ultrasound with adsorption and desorption technology have not yet been thoroughly summarized. Therefore, the key aims of this review are to (a) explain the intrinsic mechanisms of ultrasound-assisted adsorption and desorption systems, (b) discuss the factors affecting adsorption and desorption systems, (c) provide examples of the application of ultrasound in adsorption and desorption, and (d) offer our perspectives to promote the development of technologies in the fields of adsorption and desorption, ultimately achieving efficient resource recycling. Finally, ultrasound can significantly reduce the time required to reach adsorption equilibrium and increase adsorption capacity by accelerating mass transfer and modifying adsorbents. In the field of desorption, ultrasound, through its intense sonochemical effects, can accelerate desorption processes, enhance the recovery rate of valuable elements, and improve the removal of pollutants.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.