Image colorization: A survey and dataset

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-09-30 DOI:10.1016/j.inffus.2024.102720
Saeed Anwar , Muhammad Tahir , Chongyi Li , Ajmal Mian , Fahad Shahbaz Khan , Abdul Wahab Muzaffar
{"title":"Image colorization: A survey and dataset","authors":"Saeed Anwar ,&nbsp;Muhammad Tahir ,&nbsp;Chongyi Li ,&nbsp;Ajmal Mian ,&nbsp;Fahad Shahbaz Khan ,&nbsp;Abdul Wahab Muzaffar","doi":"10.1016/j.inffus.2024.102720","DOIUrl":null,"url":null,"abstract":"<div><div>Image colorization estimates RGB colors for grayscale images or video frames to improve their aesthetic and perceptual quality. Over the last decade, deep learning techniques for image colorization have significantly progressed, necessitating a systematic survey and benchmarking of these techniques. This article presents a comprehensive survey of recent state-of-the-art deep learning-based image colorization techniques, describing their fundamental block architectures, inputs, optimizers, loss functions, training protocols, training data, etc. It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance, such as benchmark datasets and evaluation metrics. We highlight the limitations of existing datasets and introduce a new dataset specific to colorization. We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one. Finally, we discuss the limitations of existing methods and recommend possible solutions and future research directions for this rapidly evolving topic of deep image colorization. The dataset and codes for evaluation are publicly available at <span><span>https://github.com/saeed-anwar/ColorSurvey</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102720"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004986","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image colorization estimates RGB colors for grayscale images or video frames to improve their aesthetic and perceptual quality. Over the last decade, deep learning techniques for image colorization have significantly progressed, necessitating a systematic survey and benchmarking of these techniques. This article presents a comprehensive survey of recent state-of-the-art deep learning-based image colorization techniques, describing their fundamental block architectures, inputs, optimizers, loss functions, training protocols, training data, etc. It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance, such as benchmark datasets and evaluation metrics. We highlight the limitations of existing datasets and introduce a new dataset specific to colorization. We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one. Finally, we discuss the limitations of existing methods and recommend possible solutions and future research directions for this rapidly evolving topic of deep image colorization. The dataset and codes for evaluation are publicly available at https://github.com/saeed-anwar/ColorSurvey.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像着色:调查与数据集
图像着色可以估算灰度图像或视频帧的 RGB 颜色,从而提高其美感和感知质量。在过去十年中,用于图像着色的深度学习技术取得了长足的进步,因此有必要对这些技术进行系统的调查和基准测试。本文全面考察了近期最先进的基于深度学习的图像着色技术,介绍了这些技术的基本模块架构、输入、优化器、损失函数、训练协议、训练数据等。它将现有的着色技术分为七类,并讨论了影响其性能的重要因素,如基准数据集和评估指标。我们强调了现有数据集的局限性,并引入了一个专门针对着色的新数据集。我们使用现有数据集和我们提出的数据集对现有图像着色方法进行了广泛的实验评估。最后,我们讨论了现有方法的局限性,并针对深度图像着色这一快速发展的课题提出了可能的解决方案和未来研究方向。用于评估的数据集和代码可在 https://github.com/saeed-anwar/ColorSurvey 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Pretraining graph transformer for molecular representation with fusion of multimodal information Pan-Mamba: Effective pan-sharpening with state space model An autoencoder-based confederated clustering leveraging a robust model fusion strategy for federated unsupervised learning FairDPFL-SCS: Fair Dynamic Personalized Federated Learning with strategic client selection for improved accuracy and fairness M-IPISincNet: An explainable multi-source physics-informed neural network based on improved SincNet for rolling bearings fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1