Modelling of wall-bounded cavitating flow and spray mixing in multi-component environments using the PC-SAFT equation of state

R. Bellini , C. Rodriguez , I.K. Karathanassis , L. Pickett , M. Gavaises , E. Geber
{"title":"Modelling of wall-bounded cavitating flow and spray mixing in multi-component environments using the PC-SAFT equation of state","authors":"R. Bellini ,&nbsp;C. Rodriguez ,&nbsp;I.K. Karathanassis ,&nbsp;L. Pickett ,&nbsp;M. Gavaises ,&nbsp;E. Geber","doi":"10.1016/j.jaecs.2024.100295","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a numerical multiphase model for multi-component mixtures, utilizing tabulated data for physical and transport properties across a spectrum of conditions from near-vacuum pressures to supercritical states. The property data are derived using Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), vapor-liquid equilibrium (VLE) calculations, entropy scaling methodologies, and Group Contribution (GC) methods. These techniques accurately reflect the thermodynamic behaviors of real fluids, avoiding the empirical estimation of Equation of State (EoS) input parameters. Implemented in OpenFOAM, the fluid dynamics solver is designed to address the three-dimensional Navier-Stokes equations for multi-component mixtures. The methodology integrates operator splitting to manage hyperbolic and parabolic steps distinctively. Hyperbolic terms are solved using the HLLC (Harten-Lax-van Leer-Contact) solver with temporal integration performed via a third-order Strong-Stability-Preserving Runge–Kutta (SSP-RK3) method. Viscous stress tensor contributions in the momentum equation are handled through an implicit velocity correction equation, while parabolic terms in the energy equation are explicitly solved. The simulation efficiency is further enhanced by adaptive Local Time Stepping and the Immersed Boundary (IB) method, which addresses interactions between the fluid and solid boundaries. Turbulence is resolved using the Wall Adaptive Large Eddy (WALE) model. Applied to high-pressure diesel fuel spray injections into non-reacting (nitrogen) gas environments, the model has been validated against Engine Combustion Network (ECN) data for the Spray-C configuration, featuring a fully cavitating multi-hole orifice. Results demonstrate that the model achieves accurate predictions across a broad range of tested conditions without the need for tuning or calibration parameters.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100295"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X24000505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a numerical multiphase model for multi-component mixtures, utilizing tabulated data for physical and transport properties across a spectrum of conditions from near-vacuum pressures to supercritical states. The property data are derived using Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), vapor-liquid equilibrium (VLE) calculations, entropy scaling methodologies, and Group Contribution (GC) methods. These techniques accurately reflect the thermodynamic behaviors of real fluids, avoiding the empirical estimation of Equation of State (EoS) input parameters. Implemented in OpenFOAM, the fluid dynamics solver is designed to address the three-dimensional Navier-Stokes equations for multi-component mixtures. The methodology integrates operator splitting to manage hyperbolic and parabolic steps distinctively. Hyperbolic terms are solved using the HLLC (Harten-Lax-van Leer-Contact) solver with temporal integration performed via a third-order Strong-Stability-Preserving Runge–Kutta (SSP-RK3) method. Viscous stress tensor contributions in the momentum equation are handled through an implicit velocity correction equation, while parabolic terms in the energy equation are explicitly solved. The simulation efficiency is further enhanced by adaptive Local Time Stepping and the Immersed Boundary (IB) method, which addresses interactions between the fluid and solid boundaries. Turbulence is resolved using the Wall Adaptive Large Eddy (WALE) model. Applied to high-pressure diesel fuel spray injections into non-reacting (nitrogen) gas environments, the model has been validated against Engine Combustion Network (ECN) data for the Spray-C configuration, featuring a fully cavitating multi-hole orifice. Results demonstrate that the model achieves accurate predictions across a broad range of tested conditions without the need for tuning or calibration parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 PC-SAFT 状态方程模拟多组分环境中的壁界空化流动和喷雾混合
这项研究利用从近真空压力到超临界状态等各种条件下的物理和传输特性表列数据,介绍了一种多组分混合物的多相数值模型。这些属性数据是通过扰动链统计关联流体理论(PC-SAFT)、汽液平衡(VLE)计算、熵缩放方法和组贡献(GC)方法得出的。这些技术准确反映了真实流体的热力学行为,避免了对状态方程(EoS)输入参数的经验估算。流体动力学求解器在 OpenFOAM 中实施,旨在解决多组分混合物的三维纳维-斯托克斯方程。该方法集成了算子拆分功能,可分别管理双曲和抛物线步骤。双曲项使用 HLLC(Harten-Lax-van Leer-Contact)求解器求解,并通过三阶强稳定性保留 Runge-Kutta (SSP-RK3) 方法进行时间积分。动量方程中的粘性应力张量通过隐式速度修正方程进行处理,而能量方程中的抛物线项则采用显式求解。自适应局部时间步进和沉浸边界(IB)方法进一步提高了模拟效率,解决了流体和固体边界之间的相互作用问题。湍流采用壁面自适应大涡流 (WALE) 模型解决。该模型应用于高压柴油喷射到非反应(氮气)环境中,并根据发动机燃烧网络(ECN)数据对喷射-C 配置进行了验证,该配置具有完全空化的多孔孔口。结果表明,该模型可在广泛的测试条件下实现精确预测,无需调整或校准参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal information propagation in confined supersonic reacting flows Clean energy technology: Hydro-processing of waste tyre pyrolysis oil (WTPO) to diesel fuel in a continuous reactor using Co/SBA-15 catalyst Aerosol ignition in iron powder flames stabilized on a new type of jet-in-hot-coflow burner Future technological directions for hydrogen internal combustion engines in transport applications Effect of flame temperature on structure and CO oxidation properties of Pt/CeO2 catalyst by flame-assisted spray pyrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1