Jiduo Dong , Linlong Tang , Binbin Wei , Xiangxing Bai , Qing Zang , Hao Zhang , Chunheng Liu , Haofei Shi , Hongyan Shi , Yang Liu , Yueguang Lu
{"title":"Tunable graphene plasmonic metadevice for infrared polarization resolved spectroscopy detection","authors":"Jiduo Dong , Linlong Tang , Binbin Wei , Xiangxing Bai , Qing Zang , Hao Zhang , Chunheng Liu , Haofei Shi , Hongyan Shi , Yang Liu , Yueguang Lu","doi":"10.1016/j.rinp.2024.108002","DOIUrl":null,"url":null,"abstract":"<div><div>Polarization-resolved spectroscopy imaging holds significant promise in various fields. However, conventional polarization-resolved spectroscopy imaging systems often reply on separate dispersion elements, polarization splitting components, and mechanical scanning or rotating structures, resulting in bulky systems with intricate designs. The pursuit of lightweight and seamlessly integrated polarization spectroscopy imaging systems presents a critical challenge. Here, we propose an integrated polarization spectroscopy detector operating in the mid-infrared range based on a tunable graphene metasurface. Within the graphene metasurface, plasmonic resonances of graphene are excited by a gold nano-grating, allowing simultaneous modulation of spectral and polarization transmission characteristics for infrared light by tuning the Fermi energy of graphene. With the help of neural network based recovery algorithms, this system achieves pixel-level spectral detection (with a resolution below 200 nm), multi-color polarization Stokes vector analysis (with a monochromatic angular error of less than 0.1 rad), and concurrent polarization and spectroscopy detection. This research paves the way for the development of the next generation integrated infrared polarization resolved spectroscopy imaging systems.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"66 ","pages":"Article 108002"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006879","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization-resolved spectroscopy imaging holds significant promise in various fields. However, conventional polarization-resolved spectroscopy imaging systems often reply on separate dispersion elements, polarization splitting components, and mechanical scanning or rotating structures, resulting in bulky systems with intricate designs. The pursuit of lightweight and seamlessly integrated polarization spectroscopy imaging systems presents a critical challenge. Here, we propose an integrated polarization spectroscopy detector operating in the mid-infrared range based on a tunable graphene metasurface. Within the graphene metasurface, plasmonic resonances of graphene are excited by a gold nano-grating, allowing simultaneous modulation of spectral and polarization transmission characteristics for infrared light by tuning the Fermi energy of graphene. With the help of neural network based recovery algorithms, this system achieves pixel-level spectral detection (with a resolution below 200 nm), multi-color polarization Stokes vector analysis (with a monochromatic angular error of less than 0.1 rad), and concurrent polarization and spectroscopy detection. This research paves the way for the development of the next generation integrated infrared polarization resolved spectroscopy imaging systems.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.