V. Prabha , T. Janisubha , S.R. Gibin , P. Pandi , A. Mariappan , M. Tamilelakkiya , P. Velusamy
{"title":"Chemical synthesis of NiO nanoparticles from Solanum trilobatum leaf extract for antibacterial and cytotoxic properties","authors":"V. Prabha , T. Janisubha , S.R. Gibin , P. Pandi , A. Mariappan , M. Tamilelakkiya , P. Velusamy","doi":"10.1016/j.nanoso.2024.101337","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical precipitation approach was employed to synthesize Nickel oxide nanoparticles (NiONPs) using Solanum trilobatum leaf extract as the stimulant and Nickel nitrate as the precursor. The Nickel oxide is examined using a range of characterization methods including X-ray diffraction, Fourier Transform Infrared spectroscopy, High-Resolution Transmission Electron Microscopy, High-Resolution Scanning Electron Microscopy, X-ray photoelectron spectroscopy, Thermo gravimetric Analysis/Derivative Thermo gravimetric Analysis, Diffuse Reflectance Spectroscopy, cytotoxicity and antimicrobial investigations The X-ray diffraction examination determined that the average size of the crystals increases as the quantities of leaf extract in the NiO<sub>2</sub> composites rise. The decrease in line broadening (β) value and the increase in leaf extract concentrations may be the cause of this phenomenon. The FTIR spectrum confirms that the as-synthesized NiO-NPs are of great purity and match well with the XRD pattern. The thermal stability of the synthesized samples was determined using TGA/DTG analysis. The analysis was conducted in an air atmosphere, with the temperature increasing at a rate of 10°C per minute. The temperature range for the analysis was from room temperature to 750°C. The optical properties are determined by the use of Diffuse Reflectance Spectroscopy, which examines the coordinated movement of electrons in the conduction band when exposed to electromagnetic waves. Rat skeletal muscle cell line and SKMEL cancer cells were cultured on 96-well plates and incubated at 37°C and 5 % CO<sub>2</sub> for 24 hours to allow them to adapt to the culture conditions. An investigation was conducted to assess the antibacterial properties of synthesized nanocomposites against two types of bacteria: gram-positive <em>Staphylococcus aureus</em> (MTCC No: 87) and gram-negative <em>Escherichia coli</em> (MTCC No: 443), in order to explore their potential for biological applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101337"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X2400249X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical precipitation approach was employed to synthesize Nickel oxide nanoparticles (NiONPs) using Solanum trilobatum leaf extract as the stimulant and Nickel nitrate as the precursor. The Nickel oxide is examined using a range of characterization methods including X-ray diffraction, Fourier Transform Infrared spectroscopy, High-Resolution Transmission Electron Microscopy, High-Resolution Scanning Electron Microscopy, X-ray photoelectron spectroscopy, Thermo gravimetric Analysis/Derivative Thermo gravimetric Analysis, Diffuse Reflectance Spectroscopy, cytotoxicity and antimicrobial investigations The X-ray diffraction examination determined that the average size of the crystals increases as the quantities of leaf extract in the NiO2 composites rise. The decrease in line broadening (β) value and the increase in leaf extract concentrations may be the cause of this phenomenon. The FTIR spectrum confirms that the as-synthesized NiO-NPs are of great purity and match well with the XRD pattern. The thermal stability of the synthesized samples was determined using TGA/DTG analysis. The analysis was conducted in an air atmosphere, with the temperature increasing at a rate of 10°C per minute. The temperature range for the analysis was from room temperature to 750°C. The optical properties are determined by the use of Diffuse Reflectance Spectroscopy, which examines the coordinated movement of electrons in the conduction band when exposed to electromagnetic waves. Rat skeletal muscle cell line and SKMEL cancer cells were cultured on 96-well plates and incubated at 37°C and 5 % CO2 for 24 hours to allow them to adapt to the culture conditions. An investigation was conducted to assess the antibacterial properties of synthesized nanocomposites against two types of bacteria: gram-positive Staphylococcus aureus (MTCC No: 87) and gram-negative Escherichia coli (MTCC No: 443), in order to explore their potential for biological applications.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .