{"title":"Optimal design of vibration resistance of fiber-reinforced composite sandwich plates embedded in a viscoelastic square honeycomb core","authors":"","doi":"10.1016/j.apm.2024.115731","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on investigating the optimal design of composite sandwich plates (FCSPs) with a viscoelastic square honeycomb core (VSHC). Firstly, using the cross-fill theory, the complex modulus technique, the first-order shear deformation theory, the minimum strain energy principle, and the Newmark-<em>β</em> method, a theoretical model of the VSHC-FCSPs under half-sine pulse excitation is formulated to calculate the inherent frequencies, the peak and vibration decay time of the transient response in time domain. The peak and vibration decay time are taken as the indexes of the anti-vibration performance. Considering an index of structural stiffness performance, the average value of the inherent frequencies is adopted to calculate the overall stiffness. After a set of literature validations and optimization validations, the multi-objective genetic algorithm is employed to study the optimization issue of VSHC-FCSPs. The optimization objectives are to minimize the three design variables of the transient response peak, vibration decay time, and reciprocal of overall stiffness. Then, the fiber laying angle of each layer, the core thickness ratio and the modulus ratio are assumed as optimization variables. Finally, the results with good vibration resistance and structural stiffness in the Pareto front are chosen as references, and these corresponding variations of the design variables and optimization objectives are obtained. The optimization results have revealed that the optimization variables corresponding to the intermediate points should be selected as references to improve the anti-vibration capacity and ensure the structural stiffness performance.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on investigating the optimal design of composite sandwich plates (FCSPs) with a viscoelastic square honeycomb core (VSHC). Firstly, using the cross-fill theory, the complex modulus technique, the first-order shear deformation theory, the minimum strain energy principle, and the Newmark-β method, a theoretical model of the VSHC-FCSPs under half-sine pulse excitation is formulated to calculate the inherent frequencies, the peak and vibration decay time of the transient response in time domain. The peak and vibration decay time are taken as the indexes of the anti-vibration performance. Considering an index of structural stiffness performance, the average value of the inherent frequencies is adopted to calculate the overall stiffness. After a set of literature validations and optimization validations, the multi-objective genetic algorithm is employed to study the optimization issue of VSHC-FCSPs. The optimization objectives are to minimize the three design variables of the transient response peak, vibration decay time, and reciprocal of overall stiffness. Then, the fiber laying angle of each layer, the core thickness ratio and the modulus ratio are assumed as optimization variables. Finally, the results with good vibration resistance and structural stiffness in the Pareto front are chosen as references, and these corresponding variations of the design variables and optimization objectives are obtained. The optimization results have revealed that the optimization variables corresponding to the intermediate points should be selected as references to improve the anti-vibration capacity and ensure the structural stiffness performance.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.