Semiparametric estimation of a principal functional coefficient panel data model with cross-sectional dependence and its application to cigarette demand

Pub Date : 2024-10-05 DOI:10.1016/j.jspi.2024.106244
Yan-Yong Zhao , Ling-Ling Ge , Kong-Sheng Zhang
{"title":"Semiparametric estimation of a principal functional coefficient panel data model with cross-sectional dependence and its application to cigarette demand","authors":"Yan-Yong Zhao ,&nbsp;Ling-Ling Ge ,&nbsp;Kong-Sheng Zhang","doi":"10.1016/j.jspi.2024.106244","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the estimation of functional coefficient panel data models with cross-sectional dependence. Borrowing the principal component structure, the functional coefficient panel data models can be transformed into a semiparametric panel data model. Combining the local linear dummy variable technique and profile least squares method, we develop a semiparametric profile method to estimate the coefficient functions. A gradient-descent iterative algorithm is employed to enhance computation speed and estimation accuracy. The main results show that the resulting parameter estimator enjoys asymptotic normality with a <span><math><msqrt><mrow><mi>N</mi><mi>T</mi></mrow></msqrt></math></span> convergence rate and the nonparametric estimator is asymptotically normal with a nonparametric convergence rate <span><math><msqrt><mrow><mi>N</mi><mi>T</mi><mi>h</mi></mrow></msqrt></math></span> when both the number of cross-sectional units <span><math><mi>N</mi></math></span> and the length of time series <span><math><mi>T</mi></math></span> go to infinity, under some regularity conditions. Monte Carlo simulations are carried out to evaluate the proposed methods, and an application to cigarette demand is investigated for illustration.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the estimation of functional coefficient panel data models with cross-sectional dependence. Borrowing the principal component structure, the functional coefficient panel data models can be transformed into a semiparametric panel data model. Combining the local linear dummy variable technique and profile least squares method, we develop a semiparametric profile method to estimate the coefficient functions. A gradient-descent iterative algorithm is employed to enhance computation speed and estimation accuracy. The main results show that the resulting parameter estimator enjoys asymptotic normality with a NT convergence rate and the nonparametric estimator is asymptotically normal with a nonparametric convergence rate NTh when both the number of cross-sectional units N and the length of time series T go to infinity, under some regularity conditions. Monte Carlo simulations are carried out to evaluate the proposed methods, and an application to cigarette demand is investigated for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有横截面依赖性的主函数系数面板数据模型的半参数估计及其在卷烟需求中的应用
本文考虑了具有横截面依赖性的函数系数面板数据模型的估计。借用主成分结构,函数系数面板数据模型可以转化为半参数面板数据模型。结合局部线性虚拟变量技术和剖面最小二乘法,我们开发了一种估计系数函数的半参数剖面方法。我们采用梯度迭代算法来提高计算速度和估计精度。主要结果表明,在一些正则性条件下,当横截面单位数 N 和时间序列长度 T 都达到无穷大时,所得到的参数估计器具有渐近正态性和 NT 收敛率,而非参数估计器具有渐近正态性和非参数收敛率 NTh。为了评估所提出的方法,我们进行了蒙特卡罗模拟,并对卷烟需求的应用进行了研究以作说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1