Analysing fluid flow and heat transfer comparatively in flow passage systems: Evaluating thermal impacts and geometric configurations

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-09-30 DOI:10.1016/j.ijft.2024.100894
{"title":"Analysing fluid flow and heat transfer comparatively in flow passage systems: Evaluating thermal impacts and geometric configurations","authors":"","doi":"10.1016/j.ijft.2024.100894","DOIUrl":null,"url":null,"abstract":"<div><div>This research thoroughly examines heat transfer and fluid flow in a passage flow system, highlighting the difficulties posed by different geometric arrangements and temperature conditions that may affect the system's performance. The main aim is to evaluate the impacts of different geometric characteristics on the velocity, pressure, and temperature profiles inside the flow route. These factors encompass cavity dimensions, tube diameter, and input conditions. An inclusive comparison of three different geometric designs at controlled temperatures is conducted using computational fluid dynamics (CFD) simulations. The findings indicate that the optimal geometric parameters improve thermal performance, with certain arrangements displaying improvements in heat transfer rates up to 30 %. In this regard, the higher cavity dimensions and suitable input velocities are exposed as advantages. The first sample exhibited a higher velocity of 0.024 m s<sup>-1</sup> due to its simpler geometry and favorable heating conditions, while the third sample demonstrated a higher temperature of 465 K due to its complex cavity shape and multiple heating sources. This study suggests that enhancing efficiency in heat management applications necessitates a strategic design approach for passage flow systems, which must account for flow characteristics and geometric specifications. This research would provide insightful information for designers and engineers looking at enhancing fluid flow systems across a range of industrial applications.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research thoroughly examines heat transfer and fluid flow in a passage flow system, highlighting the difficulties posed by different geometric arrangements and temperature conditions that may affect the system's performance. The main aim is to evaluate the impacts of different geometric characteristics on the velocity, pressure, and temperature profiles inside the flow route. These factors encompass cavity dimensions, tube diameter, and input conditions. An inclusive comparison of three different geometric designs at controlled temperatures is conducted using computational fluid dynamics (CFD) simulations. The findings indicate that the optimal geometric parameters improve thermal performance, with certain arrangements displaying improvements in heat transfer rates up to 30 %. In this regard, the higher cavity dimensions and suitable input velocities are exposed as advantages. The first sample exhibited a higher velocity of 0.024 m s-1 due to its simpler geometry and favorable heating conditions, while the third sample demonstrated a higher temperature of 465 K due to its complex cavity shape and multiple heating sources. This study suggests that enhancing efficiency in heat management applications necessitates a strategic design approach for passage flow systems, which must account for flow characteristics and geometric specifications. This research would provide insightful information for designers and engineers looking at enhancing fluid flow systems across a range of industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对流动通道系统中的流体流动和传热进行比较分析:评估热影响和几何结构
这项研究深入探讨了通道流动系统中的传热和流体流动,强调了不同几何布置和温度条件可能影响系统性能所带来的困难。主要目的是评估不同几何特征对流道内速度、压力和温度曲线的影响。这些因素包括空腔尺寸、管道直径和输入条件。通过计算流体动力学(CFD)模拟,在受控温度下对三种不同的几何设计进行了全面比较。研究结果表明,最佳几何参数可改善热性能,某些排列方式的传热率可提高 30%。在这方面,较高的空腔尺寸和合适的输入速度是其优势所在。第一个样品因其较简单的几何形状和有利的加热条件而显示出 0.024 m s-1 的较高速度,而第三个样品因其复杂的空腔形状和多个加热源而显示出 465 K 的较高温度。这项研究表明,要提高热管理应用的效率,就必须对通道流动系统采取战略性设计方法,其中必须考虑流动特性和几何规格。这项研究将为设计师和工程师在一系列工业应用中改进流体流动系统提供有见地的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Optimized thermal pretreatment for lignocellulosic biomass of pigeon pea stalks to augment quality and quantity of biogas production Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance Thermodynamic and environmental comparative analysis of a dual loop ORC and Kalina as bottoming cycle of a solar Brayton sCO2 Simulation of flow dynamics and heat transfer behavior of nanofluid in microchannel with rough surfaces Thermo-hydraulic performance of concentric tube heat exchangers with turbulent flow: Predictive correlations and iterative methods for pumping power and heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1