In-situ doped Zn2+ modified MnO molecular structure to achieve the ultrahigh capacity aqueous zinc ion batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-11 DOI:10.1016/j.est.2024.114019
{"title":"In-situ doped Zn2+ modified MnO molecular structure to achieve the ultrahigh capacity aqueous zinc ion batteries","authors":"","doi":"10.1016/j.est.2024.114019","DOIUrl":null,"url":null,"abstract":"<div><div>Faintly acidic Zn-MnO<sub>X</sub> batteries has been ultra-discussed as a focal point of the scientific community due to the rich natural resources and advanced industrial lines. However, its variable valence state and complex crystal structure can lead to the collapse of crystal phase structure and Mn dissolution in electrolyte. Herein, a Zn<sup>2+</sup> doped Mn<sub>3</sub>O<sub>4</sub> on carbon nanosheet arrays (Zn-Mn<sub>3</sub>O<sub>4</sub>/CNA) has been developed by calcination and electrochemical deposition. The Zn<sup>2+</sup> insertion can make the structure will not collapse during the transition from spinel structure (Mn<sub>3</sub>O<sub>4</sub>) to layered structure (MnO<sub>2</sub>). The carbon nanosheet arrays can improve the electric conductivity of electrochemical interface and easily in situ electrochemical deposition Mn<sub>3</sub>O<sub>4</sub>. It is worth noting that the Zn-Mn<sub>3</sub>O<sub>4</sub>/CNA cathode shows high-capacity of 316 mAh g<sup>−1</sup> and energy density of 420.8 Wh kg<sup>−1</sup> at 0.1 A g<sup>−1</sup>. Besides, its capacity retention can reach 76.3 % after 600 cycles. This work proves that cationic doping can effectively suppress the Jahn-Teller effect and promote zinc ion diffusion during discharge.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24036053","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Faintly acidic Zn-MnOX batteries has been ultra-discussed as a focal point of the scientific community due to the rich natural resources and advanced industrial lines. However, its variable valence state and complex crystal structure can lead to the collapse of crystal phase structure and Mn dissolution in electrolyte. Herein, a Zn2+ doped Mn3O4 on carbon nanosheet arrays (Zn-Mn3O4/CNA) has been developed by calcination and electrochemical deposition. The Zn2+ insertion can make the structure will not collapse during the transition from spinel structure (Mn3O4) to layered structure (MnO2). The carbon nanosheet arrays can improve the electric conductivity of electrochemical interface and easily in situ electrochemical deposition Mn3O4. It is worth noting that the Zn-Mn3O4/CNA cathode shows high-capacity of 316 mAh g−1 and energy density of 420.8 Wh kg−1 at 0.1 A g−1. Besides, its capacity retention can reach 76.3 % after 600 cycles. This work proves that cationic doping can effectively suppress the Jahn-Teller effect and promote zinc ion diffusion during discharge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位掺杂 Zn2+ 修饰 MnO 分子结构,实现超高容量锌离子水电池
微酸性锌锰氧化物电池因其丰富的自然资源和先进的工业生产线而成为科学界讨论的焦点。然而,其多变的价态和复杂的晶体结构会导致晶相结构坍塌和锰在电解液中的溶解。在此,我们通过煅烧和电化学沉积的方法,在碳纳米片阵列上制备了掺杂 Zn2+ 的 Mn3O4(Zn-Mn3O4/CNA)。Zn2+ 的插入可使结构在从尖晶石结构(Mn3O4)向层状结构(MnO2)过渡时不会坍塌。碳纳米片阵列可以改善电化学界面的导电性,易于原位电化学沉积 Mn3O4。值得注意的是,Zn-Mn3O4/CNA 阴极在 0.1 A g-1 的条件下显示出 316 mAh g-1 的高容量和 420.8 Wh kg-1 的能量密度。此外,经过 600 次循环后,其容量保持率可达 76.3%。这项研究证明,阳离子掺杂能有效抑制贾恩-泰勒效应,促进锌离子在放电过程中的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Improvement of the thermal management of lithium-ion battery with helical tube liquid cooling and phase change material integration Efficiency improvement and pressure pulsation reduction of volute centrifugal pump through diffuser design optimization Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers Accelerating float current measurement with temperature ramps revealing entropy insights A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1