Tao Yang, Xiongfeng Tang, Zhixue Yan, Guoqing Wang, Gai Zhao, Hanmin Peng
{"title":"Physics-based numerical implementation framework towards multi-scale contact problem","authors":"Tao Yang, Xiongfeng Tang, Zhixue Yan, Guoqing Wang, Gai Zhao, Hanmin Peng","doi":"10.1016/j.triboint.2024.110297","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes a general computational framework to solve the muti-scale contact problem by integrating the statistical contact model with the finite element format. Compared to existing models, the proposed method is applicable to most geometric configurations and can effectively evaluate the pressure distribution. In this work, a modified Karush-Kuhn-Tucker (KKT) condition is proposed by the assumption that asperity height obeys the Gaussian distribution. Therefore, in the variational formula, the contact contribution is decomposed into body contribution and asperity contribution, corresponding to the nominal smooth surface and roughness, respectively. Then the linearization and constraint enforcement of these two components are derived, followed by a nonlinear Newton-Raphson-based iterative algorithm. The contact patch test and Hertz contact test are conducted, and the predicted results are consistent with the theoretical and experimental values, confirming the effectiveness and accuracy of the proposed approach. It is worth noting that in the Hertz contact test, the contact pressure distribution varies progressively with the roughness level and external force, tending to the Hertz limit or Gaussian limit. This means that the proposed method can be applied to any roughness and load. Finally, the contact behaviors of the transmission interface of a piezoelectric actuator, i.e., a typical multi-scale contact problem, are studied as an engineering application case.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110297"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010491","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper establishes a general computational framework to solve the muti-scale contact problem by integrating the statistical contact model with the finite element format. Compared to existing models, the proposed method is applicable to most geometric configurations and can effectively evaluate the pressure distribution. In this work, a modified Karush-Kuhn-Tucker (KKT) condition is proposed by the assumption that asperity height obeys the Gaussian distribution. Therefore, in the variational formula, the contact contribution is decomposed into body contribution and asperity contribution, corresponding to the nominal smooth surface and roughness, respectively. Then the linearization and constraint enforcement of these two components are derived, followed by a nonlinear Newton-Raphson-based iterative algorithm. The contact patch test and Hertz contact test are conducted, and the predicted results are consistent with the theoretical and experimental values, confirming the effectiveness and accuracy of the proposed approach. It is worth noting that in the Hertz contact test, the contact pressure distribution varies progressively with the roughness level and external force, tending to the Hertz limit or Gaussian limit. This means that the proposed method can be applied to any roughness and load. Finally, the contact behaviors of the transmission interface of a piezoelectric actuator, i.e., a typical multi-scale contact problem, are studied as an engineering application case.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.