How to use stimuli-responsive soft materials for detection?

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2024-09-14 DOI:10.1016/j.cocis.2024.101860
Anne-Laure Fameau , Jonathan Potier , Ricardo Ayala , Hernan Ritacco , Romain Bordes
{"title":"How to use stimuli-responsive soft materials for detection?","authors":"Anne-Laure Fameau ,&nbsp;Jonathan Potier ,&nbsp;Ricardo Ayala ,&nbsp;Hernan Ritacco ,&nbsp;Romain Bordes","doi":"10.1016/j.cocis.2024.101860","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101860"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000785","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何使用刺激响应软材料进行探测?
对快速、经济、方便的检测方法的需求日益增长,推动了用于传感器开发的 "刺激响应软材料 "的进步。许多复杂的液晶乳液应用于细菌、病毒、酶或特定分子的检测。然而,尽管经常对乳液和泡沫进行比较,但对液态泡沫传感器应用的探索仍然有限。矛盾的是,基于泡沫的胎肺成熟度传感器是在 20 世纪 70 年代开发的,当时还没有出现更先进的检测方法。在此,我们介绍了一些用作传感器检测生物标记物、酶和细菌的软界面的例子,重点是泡沫。我们展示了如何利用泡沫性和泡沫稳定性作为读出机制。我们讨论了针对复杂乳液和液晶开发的方法,强调了这些方法适用于液态泡沫的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
Dye-sensitized solar cells (DSSC): Principles, materials and working mechanism Fundamentals in organic dyes for perovskite solar cells A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1