Spatial resolution studies using point spread function extraction in optically read out Micromegas and GEM detectors

A. Cools , E. Ferrer-Ribas , T. Papaevangelou , E.C. Pollacco , M. Lisowska , F.M. Brunbauer , E. Oliveri , F.J. Iguaz
{"title":"Spatial resolution studies using point spread function extraction in optically read out Micromegas and GEM detectors","authors":"A. Cools ,&nbsp;E. Ferrer-Ribas ,&nbsp;T. Papaevangelou ,&nbsp;E.C. Pollacco ,&nbsp;M. Lisowska ,&nbsp;F.M. Brunbauer ,&nbsp;E. Oliveri ,&nbsp;F.J. Iguaz","doi":"10.1016/j.nima.2024.169933","DOIUrl":null,"url":null,"abstract":"<div><div>Optically read out gaseous detectors are used in track reconstruction and imaging applications requiring high granularity images. Among resolution-determining factors, the amplification stage plays a crucial role and optimizations of detector geometry are pursued to maximize spatial resolution. To compare Micro Pattern Gaseous Detector (MPGD) technologies, focused low-energy X-ray beams at the SOLEIL synchrotron facility were used to record and extract point spread function widths with MICRO-Mesh Gaseous Structure (icromegas) and Gas Electron Multiplier (GEM) detectors. Point spread function width of <span><math><mo>≈</mo></math></span>108<!--> <!-->µm for Micromegas and <span><math><mo>≈</mo></math></span>127<!--> <!-->µm for GEM foils were extracted. The scanning of the beam with different intensities, energies and across the detector active region can be used to quantify resolution-limiting factors and improve imaging detectors using MPGD amplification stages.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1069 ","pages":"Article 169933"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224008593","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Optically read out gaseous detectors are used in track reconstruction and imaging applications requiring high granularity images. Among resolution-determining factors, the amplification stage plays a crucial role and optimizations of detector geometry are pursued to maximize spatial resolution. To compare Micro Pattern Gaseous Detector (MPGD) technologies, focused low-energy X-ray beams at the SOLEIL synchrotron facility were used to record and extract point spread function widths with MICRO-Mesh Gaseous Structure (icromegas) and Gas Electron Multiplier (GEM) detectors. Point spread function width of 108 µm for Micromegas and 127 µm for GEM foils were extracted. The scanning of the beam with different intensities, energies and across the detector active region can be used to quantify resolution-limiting factors and improve imaging detectors using MPGD amplification stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学读出 Micromegas 和 GEM 探测器的点扩散函数提取进行空间分辨率研究
光学读出气态探测器用于需要高颗粒度图像的轨迹重建和成像应用。在决定分辨率的因素中,放大阶段起着至关重要的作用,因此需要对探测器的几何形状进行优化,以最大限度地提高空间分辨率。为了比较微图案气态探测器(MPGD)技术,我们利用 SOLEIL 同步加速器设施的聚焦低能 X 射线束记录并提取了微网状气态结构(icromegas)和气体电子倍增器(GEM)探测器的点扩散函数宽度。MICRO-Mesh 气体结构(icromegas)和气体电子倍增器(GEM)探测器的点扩散函数宽度分别为 ≈108 µm 和 ≈127 µm。使用不同强度、能量和横跨探测器有效区域的光束扫描可用于量化限制分辨率的因素,并利用 MPGD 放大级改进成像探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
期刊最新文献
Editorial Board Editorial Board Estimation of Bonner sphere cross-talking with Monte Carlo method and spectrometer calibration with 241Am-Be neutron source FSUDAQ - A general purpose GUI data acquisition program for the CAEN x725, x730, x740 digitizers Design and performance of the balloon-borne magnetic spectrometer AESOP-Lite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1