Non-fused and fused ring non-fullerene acceptors

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2024-09-19 DOI:10.1016/j.cocis.2024.101864
{"title":"Non-fused and fused ring non-fullerene acceptors","authors":"","doi":"10.1016/j.cocis.2024.101864","DOIUrl":null,"url":null,"abstract":"<div><div>Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000827","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非熔融和熔融环状非富勒烯受体
有机太阳能电池(OSC)因其轻质、灵活和透明而备受关注。有机太阳能电池材料,特别是非富勒烯受体(NFA)的最新进展带来了显著的改进。非富勒烯受体的特点是结构可调、吸收光谱宽广,可增强电荷分离和整体性能。这些发展使非富勒烯受体成为推动 OSC 技术发展的关键材料,也是一种前景广阔的替代材料。熔环受体(FRA)的开发使功率转换效率(PCE)超过了 19%。尽管取得了这一成功,但复杂的合成工艺和较低的材料产量导致生产成本居高不下,限制了 FRA 在 OSC 中的商业可行性。相反,非熔合环受体(NFRA)具有显著的优势,包括更容易合成、更高的产量和更好的稳定性,有利于生产出具有成本效益的 OSC。基于 NFRA 的 OSC 具有与 FRA 相似的 PCE 值(高于 19%)。本综述介绍了近几个月发表的有关 FRA(尤其是 NFRA)的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1