Shuai Cui , Fangyuan Sun , Dazheng Wang , Xing Zhang , Hailong Zhang , Yanhui Feng
{"title":"Enhancing interfacial heat conduction in diamond-reinforced copper composites with boron carbide interlayers for thermal management","authors":"Shuai Cui , Fangyuan Sun , Dazheng Wang , Xing Zhang , Hailong Zhang , Yanhui Feng","doi":"10.1016/j.compositesb.2024.111871","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have synthesized a copper/boron carbide/diamond composite structure via magnetron sputtering. Surface roughness of the diamond layers was characterized using atomic force microscopy (AFM), and interfacial thermal conductance (ITC) between copper and diamond was experimentally measured by the Time-domain Thmoreflectance (TDTR) technique. Molecular dynamics (MD) simulations were conducted to investigate the influence of the <010> crystal plane thickness of boron carbide and interface roughness on the ITC. The results indicate a significant increase in ITC with the incorporation of a <010>-oriented boron carbide interlayer. The ITC initially rose and then fell as the boron carbide layer thickness increased, reaching a maximum of 286.52 MW m<sup>−2</sup> K<sup>−1</sup> for a three-layer (approximately 2 nm) interlayer, which is 14.1 times higher than that of the unmodified interface. Additionally, by creating a three-dimensional sinusoidal rough interface, we observed that increasing interface roughness can further enhance heat transfer efficiency up to a certain threshold, beyond which a saturation in phonon heat conduction is anticipated. The simulation outcomes are in good agreement with the experimental data, confirming the reliability of our findings.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111871"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006838","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have synthesized a copper/boron carbide/diamond composite structure via magnetron sputtering. Surface roughness of the diamond layers was characterized using atomic force microscopy (AFM), and interfacial thermal conductance (ITC) between copper and diamond was experimentally measured by the Time-domain Thmoreflectance (TDTR) technique. Molecular dynamics (MD) simulations were conducted to investigate the influence of the <010> crystal plane thickness of boron carbide and interface roughness on the ITC. The results indicate a significant increase in ITC with the incorporation of a <010>-oriented boron carbide interlayer. The ITC initially rose and then fell as the boron carbide layer thickness increased, reaching a maximum of 286.52 MW m−2 K−1 for a three-layer (approximately 2 nm) interlayer, which is 14.1 times higher than that of the unmodified interface. Additionally, by creating a three-dimensional sinusoidal rough interface, we observed that increasing interface roughness can further enhance heat transfer efficiency up to a certain threshold, beyond which a saturation in phonon heat conduction is anticipated. The simulation outcomes are in good agreement with the experimental data, confirming the reliability of our findings.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.