{"title":"Impulsive maneuver strategy for multi-agent orbital pursuit-evasion game under sparse rewards","authors":"Hongbo Wang, Yao Zhang","doi":"10.1016/j.ast.2024.109618","DOIUrl":null,"url":null,"abstract":"<div><div>To address the subjectivity of dense reward designs for the orbital pursuit-evasion game with multiple optimization objectives, this paper proposes the reinforcement learning method with a hierarchical network structure to guide game strategies under sparse rewards. Initially, to overcome the convergence challenges in the reinforcement learning training process under sparse rewards, a hierarchical network structure is proposed based on the hindsight experience replay. Subsequently, considering the strict constraints imposed by orbital dynamics on spacecraft state space, the reachable domain method is introduced to refine the subgoal space in the hierarchical network, further facilitating the achievement of subgoals. Finally, by adopting the centralized training-layered execution approach, a complete multi-agent reinforcement learning method with the hierarchical network structure is established, enabling networks at each level to learn effectively in parallel within sparse reward environments. Numerical simulations indicate that, under the single-agent reinforcement learning framework, the proposed method exhibits superior stability in the late training stage and enhances exploration efficiency in the early stage by 38.89% to 55.56% to the baseline method. Under the multi-agent reinforcement learning framework, as the relative distance decreases, the subgoals generated by the hierarchical network transition from long-term to short-term, aligning with human behavioral logic.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109618"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007478","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
To address the subjectivity of dense reward designs for the orbital pursuit-evasion game with multiple optimization objectives, this paper proposes the reinforcement learning method with a hierarchical network structure to guide game strategies under sparse rewards. Initially, to overcome the convergence challenges in the reinforcement learning training process under sparse rewards, a hierarchical network structure is proposed based on the hindsight experience replay. Subsequently, considering the strict constraints imposed by orbital dynamics on spacecraft state space, the reachable domain method is introduced to refine the subgoal space in the hierarchical network, further facilitating the achievement of subgoals. Finally, by adopting the centralized training-layered execution approach, a complete multi-agent reinforcement learning method with the hierarchical network structure is established, enabling networks at each level to learn effectively in parallel within sparse reward environments. Numerical simulations indicate that, under the single-agent reinforcement learning framework, the proposed method exhibits superior stability in the late training stage and enhances exploration efficiency in the early stage by 38.89% to 55.56% to the baseline method. Under the multi-agent reinforcement learning framework, as the relative distance decreases, the subgoals generated by the hierarchical network transition from long-term to short-term, aligning with human behavioral logic.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.