General patterns of soil nutrient stoichiometry, microbial metabolic limitation and carbon use efficiency in paddy and vegetable fields along a climatic transect of eastern China

IF 6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Agriculture, Ecosystems & Environment Pub Date : 2024-10-11 DOI:10.1016/j.agee.2024.109322
Bingxue Wang , Ruiyu Bi , Xintong Xu , Haojie Shen , Qianqian Zhang , Zhengqin Xiong
{"title":"General patterns of soil nutrient stoichiometry, microbial metabolic limitation and carbon use efficiency in paddy and vegetable fields along a climatic transect of eastern China","authors":"Bingxue Wang ,&nbsp;Ruiyu Bi ,&nbsp;Xintong Xu ,&nbsp;Haojie Shen ,&nbsp;Qianqian Zhang ,&nbsp;Zhengqin Xiong","doi":"10.1016/j.agee.2024.109322","DOIUrl":null,"url":null,"abstract":"<div><div>Soil nutrient stoichiometry and microbial metabolic limitation are crucial factors that regulate the biogeochemical cycling process of carbon (C), nitrogen (N) and phosphorous (P) in diversified agroecosystems. Distinct management patterns between paddy fields and vegetable gardens would possess different soil nutrient stoichiometry and microbial metabolic limitation, thus affecting C sequestration, crop production, and environmental consequences. We explored nutrient stoichiometry, microbial metabolic limitation, and carbon use efficiency in paddy and vegetable soils in temperate, warm temperate, and subtropical climatic zones across eastern China. Our results demonstrated that the soil C:N:P ratios were 36.22:3.12:1.00 for paddy and 21.26:1.72:1.00 for vegetable soils. The contents of soil organic C and total N were similar to the global average for agricultural soils; however, the total P content was low. The microbial C/N was higher in paddy soils than in vegetable soils. The ecoenzymatic C:N:P logarithmic ratios were deviating from the global average ratio of 1.00:1.00:1.00 in both paddy and vegetable soils across three climatic zones. Microbial metabolic limitation varied across climatic zones: In the temperate zone, soil microbes were limited by C and N in paddy soils, while by P in vegetable soils. In contrast, in the warm temperate and subtropical zones, microbial metabolic P limitation was observed in both paddy and vegetable soils, but not C and N. Microbial carbon use efficiency increased along climatic transect for paddy while reversed for vegetable field in eastern China. Thus, microbial C:N:P and metabolic limitation served as better indicators for nutrient cycling and carbon use efficiency.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109322"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880924004407","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil nutrient stoichiometry and microbial metabolic limitation are crucial factors that regulate the biogeochemical cycling process of carbon (C), nitrogen (N) and phosphorous (P) in diversified agroecosystems. Distinct management patterns between paddy fields and vegetable gardens would possess different soil nutrient stoichiometry and microbial metabolic limitation, thus affecting C sequestration, crop production, and environmental consequences. We explored nutrient stoichiometry, microbial metabolic limitation, and carbon use efficiency in paddy and vegetable soils in temperate, warm temperate, and subtropical climatic zones across eastern China. Our results demonstrated that the soil C:N:P ratios were 36.22:3.12:1.00 for paddy and 21.26:1.72:1.00 for vegetable soils. The contents of soil organic C and total N were similar to the global average for agricultural soils; however, the total P content was low. The microbial C/N was higher in paddy soils than in vegetable soils. The ecoenzymatic C:N:P logarithmic ratios were deviating from the global average ratio of 1.00:1.00:1.00 in both paddy and vegetable soils across three climatic zones. Microbial metabolic limitation varied across climatic zones: In the temperate zone, soil microbes were limited by C and N in paddy soils, while by P in vegetable soils. In contrast, in the warm temperate and subtropical zones, microbial metabolic P limitation was observed in both paddy and vegetable soils, but not C and N. Microbial carbon use efficiency increased along climatic transect for paddy while reversed for vegetable field in eastern China. Thus, microbial C:N:P and metabolic limitation served as better indicators for nutrient cycling and carbon use efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国东部气候带稻田和菜田土壤养分组成、微生物代谢限制和碳利用效率的一般模式
土壤养分化学计量和微生物代谢限制是调节多样化农业生态系统中碳(C)、氮(N)和磷(P)生物地球化学循环过程的关键因素。水稻田和蔬菜园不同的管理模式会产生不同的土壤养分化学计量和微生物代谢限制,从而影响碳固存、作物产量和环境后果。我们研究了中国东部温带、暖温带和亚热带气候区水稻田和菜园土壤的养分组成、微生物代谢限制和碳利用效率。结果表明,水稻土和蔬菜土的土壤C:N:P比值分别为36.22:3.12:1.00和21.26:1.72:1.00。土壤有机碳和全氮的含量与全球农业土壤的平均水平相似,但全钾的含量较低。水稻土的微生物 C/N 高于蔬菜土。在三个气候带中,水稻田和蔬菜地的生态酶C:N:P对数比偏离了全球平均比率1.00:1.00:1.00。不同气候带的微生物代谢限制各不相同:在温带,水稻土中的土壤微生物受 C 和 N 的限制,而在蔬菜土中则受 P 的限制。与此相反,在暖温带和亚热带地区,水稻田和蔬菜地的微生物代谢受限于碳和氮,而不受碳和氮的限制。因此,微生物 C:N:P 和代谢限制是养分循环和碳利用效率的更好指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agriculture, Ecosystems & Environment
Agriculture, Ecosystems & Environment 环境科学-环境科学
CiteScore
11.70
自引率
9.10%
发文量
392
审稿时长
26 days
期刊介绍: Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.
期刊最新文献
Agricultural land use modulates responses of soil biota and multifunctionality to increased antibiotic pressures Temperate grasslands under climate extremes: Effects of plant diversity on ecosystem services Phosphorus leaching in high-P soils under maize silage and interseeding cover crop system Trade-offs and synergies of food-water-land benefits for crop rotation optimization in Northeast China Water and sediment regulation eluting and washland planting lead to nitrogen increase in the lower reaches of the Yellow River
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1