Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming

Q1 Engineering Smart Materials in Medicine Pub Date : 2024-09-24 DOI:10.1016/j.smaim.2024.09.002
{"title":"Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming","authors":"","doi":"10.1016/j.smaim.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Porous shape memory polymer (SMP) scaffolds are promising ‘smart’ materials for potential use in a wide range of biomedical applications. Electrospinning provides an approach to produce fibrous SMP scaffolds to enhance their porosity, mass transfer, and flexibility. Here, we studied the effects of electrospinning parameters (rotating collector rotational speed and solvent) on shape memory and mechanical properties of a biostable thermoplastic polyurethane (PUr) SMP. Scanning electron microscopy confirmed that fiber diameter and tortuosity could be tuned using varied collector rotation speeds and/or solvents. Mechanical properties, including modulus, tensile strength, and ultimate elongation, were tuned independently of chemistry based on variations in fiber architectures. All scaffolds demonstrated shape memory properties. Additionally, due to strains that are trapped in the fibers during the electrospinning process, SMP fibers are programmed into a strained, temporary shape during the fabrication step. These fibers can be immediately triggered to recover to a non-strained primary shape after fabrication to reduce sample preparation time and complexity. As a proof-of-concept, bacterial protease-responsive SMPs were electrospun and exposed to <em>S. aureus</em> in programmed secondary shapes. Upon exposure to bacteria, these SMPs underwent shape recovery, which resulted in reduced bacterial attachment and biofilm formation. These materials could be employed as bacteria-responsive wound dressings in future work. Overall, electrospinning provides a valuable tool for tuning mechanical and shape memory properties independently from chemistry and for programming SMPs during fabrication to enable scale-up of electrospun SMP scaffolds.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Porous shape memory polymer (SMP) scaffolds are promising ‘smart’ materials for potential use in a wide range of biomedical applications. Electrospinning provides an approach to produce fibrous SMP scaffolds to enhance their porosity, mass transfer, and flexibility. Here, we studied the effects of electrospinning parameters (rotating collector rotational speed and solvent) on shape memory and mechanical properties of a biostable thermoplastic polyurethane (PUr) SMP. Scanning electron microscopy confirmed that fiber diameter and tortuosity could be tuned using varied collector rotation speeds and/or solvents. Mechanical properties, including modulus, tensile strength, and ultimate elongation, were tuned independently of chemistry based on variations in fiber architectures. All scaffolds demonstrated shape memory properties. Additionally, due to strains that are trapped in the fibers during the electrospinning process, SMP fibers are programmed into a strained, temporary shape during the fabrication step. These fibers can be immediately triggered to recover to a non-strained primary shape after fabrication to reduce sample preparation time and complexity. As a proof-of-concept, bacterial protease-responsive SMPs were electrospun and exposed to S. aureus in programmed secondary shapes. Upon exposure to bacteria, these SMPs underwent shape recovery, which resulted in reduced bacterial attachment and biofilm formation. These materials could be employed as bacteria-responsive wound dressings in future work. Overall, electrospinning provides a valuable tool for tuning mechanical and shape memory properties independently from chemistry and for programming SMPs during fabrication to enable scale-up of electrospun SMP scaffolds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过纺丝编程:同时制造和编程的电纺形状记忆聚合物纤维
多孔形状记忆聚合物(SMP)支架是一种前景广阔的 "智能 "材料,可广泛应用于生物医学领域。电纺丝提供了一种生产纤维状 SMP 支架的方法,以提高其多孔性、传质性和柔韧性。在此,我们研究了电纺丝参数(旋转收集器转速和溶剂)对生物稳定热塑性聚氨酯(PUr)SMP 的形状记忆和机械性能的影响。扫描电子显微镜证实,使用不同的收集器旋转速度和/或溶剂可以调整纤维直径和迂回度。根据纤维结构的变化,机械性能(包括模量、拉伸强度和极限伸长率)的调整与化学性质无关。所有支架都具有形状记忆特性。此外,在电纺丝过程中,由于应变被截留在纤维中,SMP 纤维在制造步骤中被编程为应变的临时形状。制造完成后,可立即触发这些纤维恢复到无应变的初始形状,以减少样品制备时间和复杂性。作为概念验证,细菌蛋白酶响应 SMP 经电纺丝后暴露于金黄色葡萄球菌,形成编程的二级形状。接触细菌后,这些 SMP 会发生形状恢复,从而减少细菌附着和生物膜的形成。在未来的工作中,这些材料可用作细菌响应型伤口敷料。总之,电纺丝提供了一种有价值的工具,可独立于化学反应调整机械和形状记忆特性,并在制造过程中对 SMP 进行编程,从而扩大电纺 SMP 支架的规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Nanobody-as versatile tool emerging in autoimmune diseases Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation Progress of smart material in the repair of intervertebral disc degeneration Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming Ultrasound-activated mechanochemical reactions for controllable biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1