Extraction of carbon and preparation of activated carbon from waste dry cell battery

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-10-02 DOI:10.1016/j.cartre.2024.100406
Md. Sahadat Hossain , Sumaya Tabassum , Sanjida Khan , Dipa Islam , Samina Ahmed
{"title":"Extraction of carbon and preparation of activated carbon from waste dry cell battery","authors":"Md. Sahadat Hossain ,&nbsp;Sumaya Tabassum ,&nbsp;Sanjida Khan ,&nbsp;Dipa Islam ,&nbsp;Samina Ahmed","doi":"10.1016/j.cartre.2024.100406","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this research was to synthesize activated carbon (AC) from discarded batteries, and the crystallographic characterization of the final product (AC), intermediate product, and raw sources were explored. The formation of activated carbon was confirmed by utilizing an X-ray diffractometer (XRD) that revealed the structure of activated carbon was hexagonal. The crystallite size of activated carbon was computed by applying several model equations (Linear straight-line method of Scherrer's equation, Monshi-Scherrer method, Sahadat-Scherrer method, Size-Strain plot method, Halder-Wagner method, Williamson-Hall method), and the range of calculated crystallite size was 5–28 nm. The weight loss occurred in the two stages those was explored by a thermogravimetric analyzer (TGA). Fourier Transform Infrared Spectrophotometer (FTIR) confirmed that there was no significant change in the peak position between intermediate product and activated carbon except for the intensity and peak separation difference. Field Emission Electron Microscope (FE-SEM) revealed several types of shapes of the waste source, intermediate product, and main product (AC).</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this research was to synthesize activated carbon (AC) from discarded batteries, and the crystallographic characterization of the final product (AC), intermediate product, and raw sources were explored. The formation of activated carbon was confirmed by utilizing an X-ray diffractometer (XRD) that revealed the structure of activated carbon was hexagonal. The crystallite size of activated carbon was computed by applying several model equations (Linear straight-line method of Scherrer's equation, Monshi-Scherrer method, Sahadat-Scherrer method, Size-Strain plot method, Halder-Wagner method, Williamson-Hall method), and the range of calculated crystallite size was 5–28 nm. The weight loss occurred in the two stages those was explored by a thermogravimetric analyzer (TGA). Fourier Transform Infrared Spectrophotometer (FTIR) confirmed that there was no significant change in the peak position between intermediate product and activated carbon except for the intensity and peak separation difference. Field Emission Electron Microscope (FE-SEM) revealed several types of shapes of the waste source, intermediate product, and main product (AC).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从废弃干电池中提取碳并制备活性炭
本研究的目标是利用废弃电池合成活性炭(AC),并探索最终产品(AC)、中间产品和原材料的晶体学特征。利用 X 射线衍射仪(XRD)确认了活性炭的形成,XRD 显示活性炭的结构为六角形。活性炭的结晶粒度是通过几个模型方程(舍勒方程直线法、Monshi-Scherrer 法、Sahadat-Scherrer 法、尺寸-应变图法、Halder-Wagner 法、Williamson-Hall 法)计算出来的,计算出的结晶粒度范围为 5-28 nm。热重分析仪(TGA)对两个阶段中发生的重量损失进行了分析。傅立叶变换红外分光光度计(FTIR)证实,中间产物和活性炭的峰值位置没有明显变化,只是强度和峰值分离度不同。场发射电子显微镜(FE-SEM)显示了废物源、中间产物和主要产物(AC)的几种形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Natural Kapok fiber-derived two-dimensional carbonized sheets as sustainable electrode material Localized surface plasmon resonance induced nonlinear absorption and optical limiting activity of gold decorated graphene/MoS2 hybrid Enhanced storage performance of a low-cost hard carbon derived from biomass Nanoscale friction and wear of graphite surface in ambient and underwater conditions Structural, electronic and dielectric properties of carbon nanotubes interacting with Co nanoclusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1