Jiangjing Shi , Tianhao Shen , Wenfu Zhang , Hong Chen , Changlei Xia
{"title":"Hygroscopic and hydrothermal aging behaviors and performance deterioration mechanisms of jute yarn wound composites","authors":"Jiangjing Shi , Tianhao Shen , Wenfu Zhang , Hong Chen , Changlei Xia","doi":"10.1016/j.compscitech.2024.110891","DOIUrl":null,"url":null,"abstract":"<div><div>The gyratory jute yarn wound composites (JYWCs) manufactured by the filament winding process show significant potential as eco-friendly alternatives to plastic pipes commonly used in outdoor settings. Ensuring the long-term service performance and durability of the JYWCs in hot and humid environments becomes critical. This study investigated the hygroscopic and hydrothermal aging behaviors of the JYWCs to elucidate their performance deterioration mechanisms. Compared with hygroscopic aging, long-term hydrothermal aging posed a more serious threat to the overall performance of the JYWCs. The jute yarns in the JYWCs experienced swelling, shrinkage, and degradation due to hygroscopic and hydrothermal aging, leading to a 47.4 % and 161.5 % increase in the void volume fraction of the JYWCs, respectively. The deterioration in the mechanical properties of the JYWCs was attributed to the attenuation of jute yarn properties, debonding of the fiber-resin matrix interface, and an increase in voids within the composites. Improving the manufacturing process to minimize voids in the JYWCs and control the pathways for moisture absorption is a highly effective strategy to enhance their long-term performance and durability.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110891"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004615","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The gyratory jute yarn wound composites (JYWCs) manufactured by the filament winding process show significant potential as eco-friendly alternatives to plastic pipes commonly used in outdoor settings. Ensuring the long-term service performance and durability of the JYWCs in hot and humid environments becomes critical. This study investigated the hygroscopic and hydrothermal aging behaviors of the JYWCs to elucidate their performance deterioration mechanisms. Compared with hygroscopic aging, long-term hydrothermal aging posed a more serious threat to the overall performance of the JYWCs. The jute yarns in the JYWCs experienced swelling, shrinkage, and degradation due to hygroscopic and hydrothermal aging, leading to a 47.4 % and 161.5 % increase in the void volume fraction of the JYWCs, respectively. The deterioration in the mechanical properties of the JYWCs was attributed to the attenuation of jute yarn properties, debonding of the fiber-resin matrix interface, and an increase in voids within the composites. Improving the manufacturing process to minimize voids in the JYWCs and control the pathways for moisture absorption is a highly effective strategy to enhance their long-term performance and durability.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.