Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Advances in Colloid and Interface Science Pub Date : 2024-10-10 DOI:10.1016/j.cis.2024.103308
Adrianna Biedrzycka, Ewa Skwarek
{"title":"Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts","authors":"Adrianna Biedrzycka,&nbsp;Ewa Skwarek","doi":"10.1016/j.cis.2024.103308","DOIUrl":null,"url":null,"abstract":"<div><div>Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103308"},"PeriodicalIF":15.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羟基磷灰石复合材料及其在吸附、医药和催化剂方面的应用
羟基磷灰石复合材料因其奇特的晶体结构和独特的属性,在吸附重金属离子、放射性元素和特定有机物方面具有巨大潜力。本文首次证明了羟基磷灰石复合材料的内在吸附机理。随后,阐明了羟基磷灰石复合材料对各种含有阳离子、阴离子和有机分子干扰的环境的选择性和竞争性。接下来,根据羟基磷灰石复合材料的形态尺寸对其进行了进一步分类。根据不同的形态研究了吸附特性和内在机制。研究表明,尽管羟基磷灰石复合材料具有出色的吸附能力和成本效益,但由于其固有的脆弱性和团聚性、处理所需的技术问题以及回收困难,其应用往往具有挑战性。最后,针对这些问题,本文讨论了羟基磷灰石复合材料吸附重金属离子和放射性元素的趋势及其应用的局限性。本文总结了羟基磷灰石复合材料在重金属离子和不同物质污染消减领域的局限性和未来改性方向,为其逐步完善和合理应用提供了深刻的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
期刊最新文献
Genetically modified organoids for tissue engineering and regenerative medicine Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1