Mingmin Liu , Zhihua Lu , Xiaodong Wang , João Paulo J. da Costa , Tai Fei
{"title":"Sound source localization via distance metric learning with regularization","authors":"Mingmin Liu , Zhihua Lu , Xiaodong Wang , João Paulo J. da Costa , Tai Fei","doi":"10.1016/j.sigpro.2024.109721","DOIUrl":null,"url":null,"abstract":"<div><div>Sound source localization (SSL) or simply direction of arrival (DOA) classification is an important ingredient in acoustic applications. Traditional model-based algorithms are susceptible to the effects of noise and reverberation, while data-driven deep learning algorithms maintain strong performance across a variety of acoustic circumstances, but typically require a large amount of labeled data. Nevertheless, the existing datasets for SSL are not sufficiently big and diverse to achieve the full potential of deep learning algorithms. Then, it is an imperative work to develop a non-data-hungry algorithm of SSL using small or medium data volume. To this end, we propose a regularized distance metric learning algorithm, that is, by means of the kernel method, we design a nonlinear feature transformation from two aspects: feature points and feature distributions. It transforms the data into a new feature space that brings features of the same class as close as possible and removes features of different classes as far away as possible, which can significantly improve the output of a DOA classifier that follows. Experimental results show that the proposed algorithm outperforms deep learning algorithms in diverse acoustic conditions.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109721"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sound source localization (SSL) or simply direction of arrival (DOA) classification is an important ingredient in acoustic applications. Traditional model-based algorithms are susceptible to the effects of noise and reverberation, while data-driven deep learning algorithms maintain strong performance across a variety of acoustic circumstances, but typically require a large amount of labeled data. Nevertheless, the existing datasets for SSL are not sufficiently big and diverse to achieve the full potential of deep learning algorithms. Then, it is an imperative work to develop a non-data-hungry algorithm of SSL using small or medium data volume. To this end, we propose a regularized distance metric learning algorithm, that is, by means of the kernel method, we design a nonlinear feature transformation from two aspects: feature points and feature distributions. It transforms the data into a new feature space that brings features of the same class as close as possible and removes features of different classes as far away as possible, which can significantly improve the output of a DOA classifier that follows. Experimental results show that the proposed algorithm outperforms deep learning algorithms in diverse acoustic conditions.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.