CO2 absorption performance of biogas slurry enhanced by biochar as a potential solvent in once-through CO2 chemical absorption process

{"title":"CO2 absorption performance of biogas slurry enhanced by biochar as a potential solvent in once-through CO2 chemical absorption process","authors":"","doi":"10.1016/j.ccst.2024.100317","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture, utilization, and storage (CCUS), offers a promising avenue for mitigating CO<sub>2</sub> emissions, in which the big challenge is the high CO<sub>2</sub> capture cost. A novel CCUS technology called once-through CO<sub>2</sub> chemical absorption using biogas slurry, could potentially reduce the CO<sub>2</sub> capture cost through decreasing the energy consumption greatly during CO<sub>2</sub> capture. This technology, however, is constrained by the CO<sub>2</sub> absorption capacity of biogas slurry. To enhance the CO<sub>2</sub> capture capacity of this innovative technology, we proposed a method to enhance CO<sub>2</sub> absorption by integrating biochar into biogas slurry. Results indicated that the CO<sub>2</sub> absorption capacity of biogas slurry improved by biochar varied with the type of biochar adopted. Among all the investigated biochar, the wood biochar like sea buckthorn and sand willow exhibited the lowest CO<sub>2</sub> capture enhancement, with 0.82±0.19 mmol/g and 0.81±0.30 mmol/g, respectively. Biochar from C4 plants like corn stalks and cobs demonstrated the highest enhancement, with 2.11±0.24 mmol/g and 2.47±0.86 mmol/g, respectively. The enhancement driven by C3 plant biochar like millet stalks and shells was intermediate, with 1.62±0.47 mmol/g and 1.62±0.46 mmol/g, respectively. The primary factor for promoting CO<sub>2</sub> absorption in the biochar-based biogas slurry was the increase in pH of biogas slurry. The total pore volume of biochar was the principal material property that enhanced CO<sub>2</sub> absorption, followed by the EC and BET surface areas of biochar. Increasing the carbonization temperature of biochar could also enhance the CO<sub>2</sub> absorption capacity by biogas slurry. In CO<sub>2</sub>-rich biochar-based biogas slurry, CO<sub>2</sub> primarily existed as HCO<sub>3</sub><sup>−</sup> and carbamate. However, for the influence of the biochar's pore structure, CO<sub>2</sub> in the CO<sub>2</sub>-rich biochar-based biogas slurry was more stable than that in CO<sub>2</sub>-rich biogas slurry.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon capture, utilization, and storage (CCUS), offers a promising avenue for mitigating CO2 emissions, in which the big challenge is the high CO2 capture cost. A novel CCUS technology called once-through CO2 chemical absorption using biogas slurry, could potentially reduce the CO2 capture cost through decreasing the energy consumption greatly during CO2 capture. This technology, however, is constrained by the CO2 absorption capacity of biogas slurry. To enhance the CO2 capture capacity of this innovative technology, we proposed a method to enhance CO2 absorption by integrating biochar into biogas slurry. Results indicated that the CO2 absorption capacity of biogas slurry improved by biochar varied with the type of biochar adopted. Among all the investigated biochar, the wood biochar like sea buckthorn and sand willow exhibited the lowest CO2 capture enhancement, with 0.82±0.19 mmol/g and 0.81±0.30 mmol/g, respectively. Biochar from C4 plants like corn stalks and cobs demonstrated the highest enhancement, with 2.11±0.24 mmol/g and 2.47±0.86 mmol/g, respectively. The enhancement driven by C3 plant biochar like millet stalks and shells was intermediate, with 1.62±0.47 mmol/g and 1.62±0.46 mmol/g, respectively. The primary factor for promoting CO2 absorption in the biochar-based biogas slurry was the increase in pH of biogas slurry. The total pore volume of biochar was the principal material property that enhanced CO2 absorption, followed by the EC and BET surface areas of biochar. Increasing the carbonization temperature of biochar could also enhance the CO2 absorption capacity by biogas slurry. In CO2-rich biochar-based biogas slurry, CO2 primarily existed as HCO3 and carbamate. However, for the influence of the biochar's pore structure, CO2 in the CO2-rich biochar-based biogas slurry was more stable than that in CO2-rich biogas slurry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭作为一次性二氧化碳化学吸收过程中的潜在溶剂,提高了沼气浆的二氧化碳吸收性能
碳捕集、利用和封存(CCUS)为减少二氧化碳排放提供了一个前景广阔的途径,但其中最大的挑战是高昂的二氧化碳捕集成本。一种新型的 CCUS 技术,即利用沼气浆对二氧化碳进行一次性化学吸收,可以大大降低二氧化碳捕集过程中的能耗,从而有可能降低二氧化碳捕集成本。然而,这项技术受到沼气浆二氧化碳吸收能力的限制。为了提高这项创新技术的二氧化碳捕集能力,我们提出了一种通过在沼气浆中加入生物炭来提高二氧化碳吸收能力的方法。结果表明,生物炭提高的沼气浆对二氧化碳的吸收能力因所采用的生物炭类型而异。在所有研究的生物炭中,沙棘和沙柳等木质生物炭的二氧化碳捕集能力最低,分别为 0.82±0.19 mmol/g 和 0.81±0.30 mmol/g。来自 C4 植物(如玉米秆和玉米棒)的生物炭的二氧化碳捕集增强率最高,分别为 2.11±0.24 mmol/g 和 2.47±0.86 mmol/g。小米茎秆和外壳等 C3 植物生物炭的增强效果居中,分别为 1.62±0.47 mmol/g 和 1.62±0.46 mmol/g。促进生物炭基沼气浆吸收二氧化碳的主要因素是提高沼气浆的 pH 值。生物炭的总孔容积是促进二氧化碳吸收的主要材料特性,其次是生物炭的导电率和 BET 表面积。提高生物炭的碳化温度也能增强沼气浆对 CO2 的吸收能力。在富含 CO2 的生物炭沼气浆中,CO2 主要以 HCO3- 和氨基甲酸酯的形式存在。然而,受生物炭孔隙结构的影响,富含 CO2 的生物炭基沼气浆中的 CO2 比富含 CO2 的沼气浆中的 CO2 更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1