Eunbin Hong , SeungYeon Lee , Hayoung Kim , JeongEun Park , Myoung Bae Seo , June-Seong Yi
{"title":"Graph-based intelligent accident hazard ontology using natural language processing for tracking, prediction, and learning","authors":"Eunbin Hong , SeungYeon Lee , Hayoung Kim , JeongEun Park , Myoung Bae Seo , June-Seong Yi","doi":"10.1016/j.autcon.2024.105800","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenge of dispersed accident-related information on construction sites, which hinders consensus among employers, workers, supervisors, and society. A robust NLP-based framework is presented to analyze and structure accident-related textual data into a comprehensive knowledge base that reveals accident patterns and risk information. Accident scenarios, including frequency and severity scores, are structured into a graph database through knowledge modeling, establishing an ontology to elucidate keyword relationships. Network analysis identifies accident patterns, quantifies scenario likelihood and severity, and predicts criticality, forming an accident hazard ontology. This vectorized ontology supports accident tracking, prediction, and learning with potential applications. The framework ensures reliable data integration, real-time hazard assessment, and proactive safety measures.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the challenge of dispersed accident-related information on construction sites, which hinders consensus among employers, workers, supervisors, and society. A robust NLP-based framework is presented to analyze and structure accident-related textual data into a comprehensive knowledge base that reveals accident patterns and risk information. Accident scenarios, including frequency and severity scores, are structured into a graph database through knowledge modeling, establishing an ontology to elucidate keyword relationships. Network analysis identifies accident patterns, quantifies scenario likelihood and severity, and predicts criticality, forming an accident hazard ontology. This vectorized ontology supports accident tracking, prediction, and learning with potential applications. The framework ensures reliable data integration, real-time hazard assessment, and proactive safety measures.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.