Kun Yang , Yan Bao , Jiulin Li , Tingli Fan , Chao Tang
{"title":"Deep learning-based YOLO for crack segmentation and measurement in metro tunnels","authors":"Kun Yang , Yan Bao , Jiulin Li , Tingli Fan , Chao Tang","doi":"10.1016/j.autcon.2024.105818","DOIUrl":null,"url":null,"abstract":"<div><div>To address the increasing issue of cracks in metro shield tunnels, this paper proposes the YOLOv8-GSD model, which integrates DySnakeConv, BiLevelRoutingAttention, and the Gather-and-Distribute Mechanism with the YOLOv8 algorithm. This model is designed for detecting and segmenting cracks in tunnel linings and employs a pixel grouping method to measure crack length and width. Using a real crack dataset from a subway section in Suzhou, China, comparative experiments with YOLOv8x, BlendMask, SOLOv2, and YOLACT demonstrate that YOLOv8-GSD excels in segmentation performance (AP of 82.4 %) and accuracy (IoU of 0.812). The measured crack dimensions show an error within 5 % compared to actual values, confirming the model's effectiveness. These results highlight the potential of YOLOv8-GSD for enhancing the maintenance and safety of metro tunnels.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005545","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the increasing issue of cracks in metro shield tunnels, this paper proposes the YOLOv8-GSD model, which integrates DySnakeConv, BiLevelRoutingAttention, and the Gather-and-Distribute Mechanism with the YOLOv8 algorithm. This model is designed for detecting and segmenting cracks in tunnel linings and employs a pixel grouping method to measure crack length and width. Using a real crack dataset from a subway section in Suzhou, China, comparative experiments with YOLOv8x, BlendMask, SOLOv2, and YOLACT demonstrate that YOLOv8-GSD excels in segmentation performance (AP of 82.4 %) and accuracy (IoU of 0.812). The measured crack dimensions show an error within 5 % compared to actual values, confirming the model's effectiveness. These results highlight the potential of YOLOv8-GSD for enhancing the maintenance and safety of metro tunnels.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.