Deep learning-based YOLO for crack segmentation and measurement in metro tunnels

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-10-09 DOI:10.1016/j.autcon.2024.105818
Kun Yang , Yan Bao , Jiulin Li , Tingli Fan , Chao Tang
{"title":"Deep learning-based YOLO for crack segmentation and measurement in metro tunnels","authors":"Kun Yang ,&nbsp;Yan Bao ,&nbsp;Jiulin Li ,&nbsp;Tingli Fan ,&nbsp;Chao Tang","doi":"10.1016/j.autcon.2024.105818","DOIUrl":null,"url":null,"abstract":"<div><div>To address the increasing issue of cracks in metro shield tunnels, this paper proposes the YOLOv8-GSD model, which integrates DySnakeConv, BiLevelRoutingAttention, and the Gather-and-Distribute Mechanism with the YOLOv8 algorithm. This model is designed for detecting and segmenting cracks in tunnel linings and employs a pixel grouping method to measure crack length and width. Using a real crack dataset from a subway section in Suzhou, China, comparative experiments with YOLOv8x, BlendMask, SOLOv2, and YOLACT demonstrate that YOLOv8-GSD excels in segmentation performance (AP of 82.4 %) and accuracy (IoU of 0.812). The measured crack dimensions show an error within 5 % compared to actual values, confirming the model's effectiveness. These results highlight the potential of YOLOv8-GSD for enhancing the maintenance and safety of metro tunnels.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005545","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the increasing issue of cracks in metro shield tunnels, this paper proposes the YOLOv8-GSD model, which integrates DySnakeConv, BiLevelRoutingAttention, and the Gather-and-Distribute Mechanism with the YOLOv8 algorithm. This model is designed for detecting and segmenting cracks in tunnel linings and employs a pixel grouping method to measure crack length and width. Using a real crack dataset from a subway section in Suzhou, China, comparative experiments with YOLOv8x, BlendMask, SOLOv2, and YOLACT demonstrate that YOLOv8-GSD excels in segmentation performance (AP of 82.4 %) and accuracy (IoU of 0.812). The measured crack dimensions show an error within 5 % compared to actual values, confirming the model's effectiveness. These results highlight the potential of YOLOv8-GSD for enhancing the maintenance and safety of metro tunnels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的 YOLO,用于地铁隧道裂缝分割和测量
针对地铁盾构隧道中日益严重的裂缝问题,本文提出了 YOLOv8-GSD 模型,该模型将 DySnakeConv、BiLevelRoutingAttention 和 Gather-and-Distribute Mechanism 与 YOLOv8 算法集成在一起。该模型专为检测和分割隧道衬砌裂缝而设计,采用像素分组法测量裂缝长度和宽度。通过使用来自中国苏州地铁路段的真实裂缝数据集,与 YOLOv8x、BlendMask、SOLOv2 和 YOLACT 的对比实验表明,YOLOv8-GSD 在分割性能(AP 为 82.4%)和准确性(IoU 为 0.812)方面表现出色。测得的裂缝尺寸与实际值相比误差在 5% 以内,证明了模型的有效性。这些结果凸显了 YOLOv8-GSD 在提高地铁隧道维护和安全性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Robust optimization model for traceable procurement of construction materials considering contract claims Editorial Board Rutting extraction from vehicle-borne laser point clouds Self-supervised monocular depth estimation on construction sites in low-light conditions and dynamic scenes Automated reinforcement of 3D-printed engineered cementitious composite beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1