M. Enterría , L. Medinilla , S.N. Faisal , Y. Zhang , J.M. López del Amo , I. Ruiz De Larramendi , L. Lezama , D.L. Officer , G.G. Wallace , N. Ortiz-Vitoriano
{"title":"Surface-controlled deposition of discharge products in NaO2 batteries using a defect-rich graphene cathode","authors":"M. Enterría , L. Medinilla , S.N. Faisal , Y. Zhang , J.M. López del Amo , I. Ruiz De Larramendi , L. Lezama , D.L. Officer , G.G. Wallace , N. Ortiz-Vitoriano","doi":"10.1016/j.susmat.2024.e01135","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium‑oxygen (Na<img>O<sub>2</sub>) batteries are promising high-capacity devices for future energy storage, replacing the unsustainable dependence on fossil fuels. These batteries convert molecular oxygen into sodium superoxide (NaO<sub>2</sub>) which is deposited during discharge at the cathode. It has been demonstrated that the morphology of the discharged NaO<sub>2</sub> is critical for battery performance, as the insulating nature of these solid products leads to premature cell death by passivating the cathode surface at high discharge capacities. These constraints seriously affect the battery rechargeability by hindering the oxidation of NaO<sub>2</sub> during charge. In this context, the size and distribution of the discharged solid particles is crucial for the implementation of these batteries. Here, we present a template-assisted electro crystallization of NaO<sub>2</sub> in Na<img>O<sub>2</sub> batteries by using a graphene cathode enriched with atomic defects. The high free energy of such atomic defects induces the nucleation of few-micron sized NaO<sub>2</sub> cubes strategically localized at dispersed points of the surface. The high dispersion of small superoxide particles, by a surface-controlled crystallization, increases the cyclability of the battery at high discharge capacities, which is the major bottleneck in metal-air battery technology.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01135"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003154","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium‑oxygen (NaO2) batteries are promising high-capacity devices for future energy storage, replacing the unsustainable dependence on fossil fuels. These batteries convert molecular oxygen into sodium superoxide (NaO2) which is deposited during discharge at the cathode. It has been demonstrated that the morphology of the discharged NaO2 is critical for battery performance, as the insulating nature of these solid products leads to premature cell death by passivating the cathode surface at high discharge capacities. These constraints seriously affect the battery rechargeability by hindering the oxidation of NaO2 during charge. In this context, the size and distribution of the discharged solid particles is crucial for the implementation of these batteries. Here, we present a template-assisted electro crystallization of NaO2 in NaO2 batteries by using a graphene cathode enriched with atomic defects. The high free energy of such atomic defects induces the nucleation of few-micron sized NaO2 cubes strategically localized at dispersed points of the surface. The high dispersion of small superoxide particles, by a surface-controlled crystallization, increases the cyclability of the battery at high discharge capacities, which is the major bottleneck in metal-air battery technology.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.