Design and analysis of single-electrode integrated lithium niobate optical phased array for two-dimensional beam steering

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-10-04 DOI:10.1016/j.optlaseng.2024.108617
{"title":"Design and analysis of single-electrode integrated lithium niobate optical phased array for two-dimensional beam steering","authors":"","doi":"10.1016/j.optlaseng.2024.108617","DOIUrl":null,"url":null,"abstract":"<div><div>The realization of high-speed, low-power optical phased array (OPA) on thin-film lithium niobate on insulator (LNOI) is considered an ideal solution for the next generation of solid-state beam steering. Most reported on-chip two-dimensional optical phased arrays suffer from issues such as large antenna spacing, high power consumption and complex wiring due to independent control of array elements. To address these challenges while fully utilizing the benefits of the LNOI platform, we propose a two-dimensional beam-scanning OPA based on lithium niobate (LN) waveguides. We design a multi-layer cascaded domain engineering structure inside the LN waveguide, combined with wavelength tuning, to enable two-dimensional beam scanning with single electrode controlling the OPA. Through simulation, we achieve a 42°×9.2° two-dimensional beam steering. Compared to existing on-chip integrated OPAs, this work offers significant advantages in increasing integration, simplifying control units and reducing power consumption.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005955","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The realization of high-speed, low-power optical phased array (OPA) on thin-film lithium niobate on insulator (LNOI) is considered an ideal solution for the next generation of solid-state beam steering. Most reported on-chip two-dimensional optical phased arrays suffer from issues such as large antenna spacing, high power consumption and complex wiring due to independent control of array elements. To address these challenges while fully utilizing the benefits of the LNOI platform, we propose a two-dimensional beam-scanning OPA based on lithium niobate (LN) waveguides. We design a multi-layer cascaded domain engineering structure inside the LN waveguide, combined with wavelength tuning, to enable two-dimensional beam scanning with single electrode controlling the OPA. Through simulation, we achieve a 42°×9.2° two-dimensional beam steering. Compared to existing on-chip integrated OPAs, this work offers significant advantages in increasing integration, simplifying control units and reducing power consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二维光束转向的单电极集成铌酸锂光学相控阵的设计与分析
在绝缘体上的铌酸锂薄膜(LNOI)上实现高速、低功耗光学相控阵(OPA)被认为是下一代固态光束转向的理想解决方案。大多数已报道的片上二维光学相控阵都存在天线间距大、功耗高以及阵元独立控制导致布线复杂等问题。为了应对这些挑战,同时充分利用 LNOI 平台的优势,我们提出了一种基于铌酸锂 (LN) 波导的二维光束扫描 OPA。我们在铌酸锂波导内设计了一种多层级联畴工程结构,结合波长调谐功能,实现了单电极控制 OPA 的二维光束扫描。通过仿真,我们实现了 42°×9.2° 的二维光束转向。与现有的片上集成 OPA 相比,这项工作在提高集成度、简化控制单元和降低功耗方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane Wafer chamfering grinding wheels dressing via dynamic deflection laser beam Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays Enhanced light field depth estimation through occlusion refinement and feature fusion Highly-secure scattering-media-based key storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1