Emerging trends: Smartphone-assisted aptasensors enabling detection of pathogen and chemical contamination

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2024-10-01 DOI:10.1016/j.microc.2024.111736
Priyanka Garg , Ritika Gupta , Nitesh Priyadarshi , Poonam Sagar , Vishakha Bisht , Naveen K. Navani , Nitin Kumar Singhal
{"title":"Emerging trends: Smartphone-assisted aptasensors enabling detection of pathogen and chemical contamination","authors":"Priyanka Garg ,&nbsp;Ritika Gupta ,&nbsp;Nitesh Priyadarshi ,&nbsp;Poonam Sagar ,&nbsp;Vishakha Bisht ,&nbsp;Naveen K. Navani ,&nbsp;Nitin Kumar Singhal","doi":"10.1016/j.microc.2024.111736","DOIUrl":null,"url":null,"abstract":"<div><div>The timely and rapid detection of pathogens and environmental contaminants is critical in safeguarding human health and preventing crises. Pathogens, antibiotic residues, pesticides, and heavy metals pose significant threats to human lives and the economy due to their rapid spread. Developing effective methods for detecting and preventing contaminant spread remains a major challenge. Researchers have been exploring innovative sensing approaches to enable easy, portable, and cost-effective detection using smartphones as versatile sensing tools in recent years. Integrating smartphones with detection assays allows for convenient result acquisition through a simple photograph. Aptamers, with their high affinity and selectivity, have gained substantial interest in biosensing, and they are increasingly employed in the design of novel detection assays based on optical or electrochemical principles. Additionally, smartphone applications can be developed to process images and analyze results based on optical or electrochemical signals, accurately determining pathogen loads. Apart from aptamers, smartphone-based detection platforms also utilize other sensing elements, such as antibodies, carbohydrates, and proteins. Coupling smartphones with detection assays simplifies the detection procedure, making it portable and highly sensitive. This review focuses on the latest technological advancements in smartphone-based devices for biosensing applications, highlighting their potential for rapid pathogen and contaminant detection.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111736"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24018484","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The timely and rapid detection of pathogens and environmental contaminants is critical in safeguarding human health and preventing crises. Pathogens, antibiotic residues, pesticides, and heavy metals pose significant threats to human lives and the economy due to their rapid spread. Developing effective methods for detecting and preventing contaminant spread remains a major challenge. Researchers have been exploring innovative sensing approaches to enable easy, portable, and cost-effective detection using smartphones as versatile sensing tools in recent years. Integrating smartphones with detection assays allows for convenient result acquisition through a simple photograph. Aptamers, with their high affinity and selectivity, have gained substantial interest in biosensing, and they are increasingly employed in the design of novel detection assays based on optical or electrochemical principles. Additionally, smartphone applications can be developed to process images and analyze results based on optical or electrochemical signals, accurately determining pathogen loads. Apart from aptamers, smartphone-based detection platforms also utilize other sensing elements, such as antibodies, carbohydrates, and proteins. Coupling smartphones with detection assays simplifies the detection procedure, making it portable and highly sensitive. This review focuses on the latest technological advancements in smartphone-based devices for biosensing applications, highlighting their potential for rapid pathogen and contaminant detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新趋势:能检测病原体和化学污染的智能手机辅助灵敏传感器
及时、快速地检测病原体和环境污染物对于保障人类健康和预防危机至关重要。病原体、抗生素残留、杀虫剂和重金属因其快速传播而对人类生命和经济构成重大威胁。开发检测和防止污染物扩散的有效方法仍然是一项重大挑战。近年来,研究人员一直在探索创新的传感方法,利用智能手机作为多功能传感工具,实现简便、便携、经济高效的检测。将智能手机与检测方法相结合,只需简单拍照就能方便地获取结果。具有高亲和力和高选择性的 Aptamers 已在生物传感领域受到广泛关注,并越来越多地被用于设计基于光学或电化学原理的新型检测方法。此外,还可以开发智能手机应用程序,根据光学或电化学信号处理图像和分析结果,准确确定病原体的负荷。除适配体外,基于智能手机的检测平台还可利用其他传感元件,如抗体、碳水化合物和蛋白质。将智能手机与检测化验相结合,简化了检测程序,使其便携、灵敏度高。本综述重点介绍基于智能手机的生物传感应用设备的最新技术进展,突出其在病原体和污染物快速检测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Detection of parvovirus B19 genomic fragments using an electrochemical biosensor based on argonaute-assisted silver metallization Comparison of total phenolic content in organic and conventional carrot under different drying conditions using non-destructive analysis techniques Highly sensitive detection of Campylobacter jejuni using a carbon dot-embedded nanoMIPs fluorescent sensor Hallucinogens in different complex samples: Recent updates on pretreatment and analysis methods since 2017 Three-dimensional fluorescence spectral characteristic of flavonoids for citrus Huanglongbing disease early detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1