Fareeha Arshad, Bong Jing Yee, Koo Pey Ting, Arifah Arina Syairah Janudin, Muhammad Nadzre Adzremeen bin Amir, Minhaz Uddin Ahmed
{"title":"Nanomaterials as signal amplifiers in CRISPR/Cas biosensors: A path toward multiplex point-of-care diagnostics","authors":"Fareeha Arshad, Bong Jing Yee, Koo Pey Ting, Arifah Arina Syairah Janudin, Muhammad Nadzre Adzremeen bin Amir, Minhaz Uddin Ahmed","doi":"10.1016/j.microc.2024.111826","DOIUrl":null,"url":null,"abstract":"<div><div>With the recent shift in perspective in compacting diagnostic laboratories to recreate miniaturised and portable diagnostic tools that can perform rapid, on-site detection, novel nanomaterials have been explored for their application in developing unique point-of-care systems. Upon integration with CRISPR/Cas, it can perform large-scale screening and potentially be applied even under remote conditions, especially in sudden outbreaks and pandemics. Despite the high <em>trans</em>-cleavage activity of the CRISPR/Cas system to give a rapid fluorometric response, their application towards detecting target analytes from complex samples suffers from limited stability and sensitivity. On the contrary, nanomaterials demonstrate robust activity and versatile properties, including rapid optical and electrocatalytic activity, which places them in an ideal position to be applied as signal amplifier systems along with CRISPR/Cas. With the integration of <em>trans</em>-cleavage activity of CRISPR/Cas and nanomaterials, it is possible to develop the next generation of diagnostics that can detect various kinds of biomarkers using different optical and electrochemical transduction methods, which play a crucial role in personalised medicine and precision agriculture. Through this review, we aim to explore the recent advances in the field of CRISPR/Cas – nanomaterial-based biosensors that offer the promising potential to be applied in the highly sensitive and selective detection of multiple target analytes. The potential of applying such biosensors towards developing multiplex biosensors will also be explored, followed by the outlook of this promising diagnostic technology.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111826"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24019386","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the recent shift in perspective in compacting diagnostic laboratories to recreate miniaturised and portable diagnostic tools that can perform rapid, on-site detection, novel nanomaterials have been explored for their application in developing unique point-of-care systems. Upon integration with CRISPR/Cas, it can perform large-scale screening and potentially be applied even under remote conditions, especially in sudden outbreaks and pandemics. Despite the high trans-cleavage activity of the CRISPR/Cas system to give a rapid fluorometric response, their application towards detecting target analytes from complex samples suffers from limited stability and sensitivity. On the contrary, nanomaterials demonstrate robust activity and versatile properties, including rapid optical and electrocatalytic activity, which places them in an ideal position to be applied as signal amplifier systems along with CRISPR/Cas. With the integration of trans-cleavage activity of CRISPR/Cas and nanomaterials, it is possible to develop the next generation of diagnostics that can detect various kinds of biomarkers using different optical and electrochemical transduction methods, which play a crucial role in personalised medicine and precision agriculture. Through this review, we aim to explore the recent advances in the field of CRISPR/Cas – nanomaterial-based biosensors that offer the promising potential to be applied in the highly sensitive and selective detection of multiple target analytes. The potential of applying such biosensors towards developing multiplex biosensors will also be explored, followed by the outlook of this promising diagnostic technology.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.