Wanjie Dong , Yuran Huang , Wenli Tao , Liang Xu , Yubing Han , Xiang Hao , Cuifang Kuang , Xu Liu
{"title":"Dual-color live-cell super-resolution fluorescence lifetime imaging via polarization modulation-based fluorescence emission difference","authors":"Wanjie Dong , Yuran Huang , Wenli Tao , Liang Xu , Yubing Han , Xiang Hao , Cuifang Kuang , Xu Liu","doi":"10.1016/j.optlaseng.2024.108547","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescence lifetime imaging microscopy (FLIM) has been proposed as an important technique for understanding the chemical microenvironment in cells and tissues, as it provides additional information compared to conventional fluorescence imaging. However, it is often hindered by limited spatial resolution and signal-to-noise ratio (SNR). In this study, we introduce a dual-color super-resolution FLIM method, termed Parallel Detection and Fluorescence Emission Difference (PDFED) FLIM. The integration of parallel detection with photon reassignment enhances photon efficiency, SNR, and resolution effectively. Additionally, differential imaging employing polarization modulation effectively reduces artifacts resulting from sample changes during live-cell imaging. PDFED-FLIM demonstrates enhancements in spatial resolution by approximately 1.6 times and peak signal-to-noise ratio (PSNR) by around 1.3 times. Furthermore, live-cell imaging showcases improved resolution and image quality, signifying the extensive potential of PDFED-FLIM in biomedical applications.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108547"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been proposed as an important technique for understanding the chemical microenvironment in cells and tissues, as it provides additional information compared to conventional fluorescence imaging. However, it is often hindered by limited spatial resolution and signal-to-noise ratio (SNR). In this study, we introduce a dual-color super-resolution FLIM method, termed Parallel Detection and Fluorescence Emission Difference (PDFED) FLIM. The integration of parallel detection with photon reassignment enhances photon efficiency, SNR, and resolution effectively. Additionally, differential imaging employing polarization modulation effectively reduces artifacts resulting from sample changes during live-cell imaging. PDFED-FLIM demonstrates enhancements in spatial resolution by approximately 1.6 times and peak signal-to-noise ratio (PSNR) by around 1.3 times. Furthermore, live-cell imaging showcases improved resolution and image quality, signifying the extensive potential of PDFED-FLIM in biomedical applications.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques