Next-generation smart biomaterials for storage and extraction of bioanalytical samples: Current standing and path forward

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2024-10-05 DOI:10.1016/j.microc.2024.111846
Sohan G. Jawarkar, Megha Pillai, Prasad Chavan, Pinaki Sengupta
{"title":"Next-generation smart biomaterials for storage and extraction of bioanalytical samples: Current standing and path forward","authors":"Sohan G. Jawarkar,&nbsp;Megha Pillai,&nbsp;Prasad Chavan,&nbsp;Pinaki Sengupta","doi":"10.1016/j.microc.2024.111846","DOIUrl":null,"url":null,"abstract":"<div><div>Smart biomaterials are gaining increasing importance in the field of bioanalytical sciences because of the unique ability to change their inherent properties as per need. Recently, many advancements have been witnessed in the storage techniques of biological samples in solid state. Among these, dried blood spot and dried plasma spot methods have unique advantages as cutting-edge approaches. However, such methods are capable to accommodate only a very low volume of sample. To overcome this limitation, the application of smart biomaterial for the storage and extraction of biological samples is now being widely explored. The primary focus of this review is to assess the potential of smart biomaterial for the storage and extraction of bioanalytical samples. The applicability of biomaterials as sorbents for bioanalytical sample extraction and storage emphasizing their unique nature, characterization techniques, and constraints are critically evaluated in this review. Furthermore, applications of biomaterials in tissue engineering, drug delivery, and 3D-printing showcasing their potential to address key challenges in healthcare have been discussed. This review provides a clear-insights into the future directions of smart biomaterial as a sorbent for bioanalytical sample preparation and storage. Interdisciplinary collaboration and translational efforts are identified as a need of the hour to harness the full potential of smart biomaterials in clinical applications.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111846"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24019581","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Smart biomaterials are gaining increasing importance in the field of bioanalytical sciences because of the unique ability to change their inherent properties as per need. Recently, many advancements have been witnessed in the storage techniques of biological samples in solid state. Among these, dried blood spot and dried plasma spot methods have unique advantages as cutting-edge approaches. However, such methods are capable to accommodate only a very low volume of sample. To overcome this limitation, the application of smart biomaterial for the storage and extraction of biological samples is now being widely explored. The primary focus of this review is to assess the potential of smart biomaterial for the storage and extraction of bioanalytical samples. The applicability of biomaterials as sorbents for bioanalytical sample extraction and storage emphasizing their unique nature, characterization techniques, and constraints are critically evaluated in this review. Furthermore, applications of biomaterials in tissue engineering, drug delivery, and 3D-printing showcasing their potential to address key challenges in healthcare have been discussed. This review provides a clear-insights into the future directions of smart biomaterial as a sorbent for bioanalytical sample preparation and storage. Interdisciplinary collaboration and translational efforts are identified as a need of the hour to harness the full potential of smart biomaterials in clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于储存和提取生物分析样本的新一代智能生物材料:现状与未来之路
智能生物材料能够根据需要改变其固有特性,因此在生物分析科学领域的重要性与日俱增。最近,固态生物样本存储技术取得了许多进展。其中,干血斑和干血浆斑法作为最先进的方法具有独特的优势。然而,这些方法只能容纳极少量的样本。为了克服这一限制,人们正在广泛探索应用智能生物材料来储存和提取生物样本。本综述的主要重点是评估智能生物材料在生物分析样本的储存和提取方面的潜力。本综述对生物材料作为吸附剂用于生物分析样品提取和储存的适用性进行了严格评估,强调了生物材料的独特性质、表征技术和限制因素。此外,还讨论了生物材料在组织工程、药物输送和三维打印方面的应用,展示了生物材料在应对医疗保健领域关键挑战方面的潜力。本综述清晰地揭示了智能生物材料作为吸附剂用于生物分析样品制备和储存的未来发展方向。跨学科合作和转化工作被认为是利用智能生物材料在临床应用中的全部潜力的当务之急。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Hallucinogens in different complex samples: Recent updates on pretreatment and analysis methods since 2017 Recent advances regarding development of effervescence reaction-assisted microextraction techniques for determination of organic pollutants in complex media Deciphering versatile electrode materials in the electrochemical progressive processes for flutamide detection: A systematic review Nuclear magnetic resonance (NMR) applications in biodiesel characterization and quality – A review Nanosorbents in solid-phase extraction techniques for bioanalysis: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1