Weijie Zhou , Hanrui Feng , Zeyu Guo , Huating Jia , Yue Li , Xinyue Luo , Siwei Ran , Hanming Zhang , Ziyu Zhou , Jiakai Yuan , Jiaxin Liu , Shijie Sun , Faan Chen
{"title":"Machine learning embedded hybrid MCDM model to mitigate decision uncertainty in transport safety planning for OAS countries","authors":"Weijie Zhou , Hanrui Feng , Zeyu Guo , Huating Jia , Yue Li , Xinyue Luo , Siwei Ran , Hanming Zhang , Ziyu Zhou , Jiakai Yuan , Jiaxin Liu , Shijie Sun , Faan Chen","doi":"10.1016/j.seps.2024.102082","DOIUrl":null,"url":null,"abstract":"<div><div>Providing defensible decisions is a prerequisite for methodologies of multi-criteria decision-making (MCDM) activities, and this is especially true for socio-economic analysis in public sector. This study proposes an all-in-one MCDM model with machine learning algorithms. The model integrates the method based on the removal effects of criteria (MEREC), combined compromise solution (CoCoSo), and density-based spatial clustering of applications with noise (DBSCAN), i.e., MEREC–CoCoSo–DBSCAN. In particular, the uniform manifold approximation and projection (UMAP) is implanted in DBSCAN to reduce the data dimensionality, and the k-nearest neighbors (KNN) algorithm is embedded to determine the inflection points (<em>ɛ</em>) and <em>minPts</em> in the data. This counters the inherent model failure of DBSCAN in dealing with high-dimensional data and eliminates the requirement for manual intervention in the model procedure, thereby fully avoiding potential human error and automating the computing process. A case study on benchmarking transport safety systems for member countries of the Organization of American States (OAS) demonstrates the reliability, adaptability, and efficiency of the proposed model. It moreover reflects its feasibility in resolving real-life socio-economic issues by offering valuable insights and potential solutions in economic investment and funding allocation in regard to transport safety strategy. Overall, this study provides government officials, managers, and policymakers with a valuable tool for handling MCDM activities in socio-economic development with considerable practicality and credibility.</div></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"96 ","pages":"Article 102082"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012124002829","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Providing defensible decisions is a prerequisite for methodologies of multi-criteria decision-making (MCDM) activities, and this is especially true for socio-economic analysis in public sector. This study proposes an all-in-one MCDM model with machine learning algorithms. The model integrates the method based on the removal effects of criteria (MEREC), combined compromise solution (CoCoSo), and density-based spatial clustering of applications with noise (DBSCAN), i.e., MEREC–CoCoSo–DBSCAN. In particular, the uniform manifold approximation and projection (UMAP) is implanted in DBSCAN to reduce the data dimensionality, and the k-nearest neighbors (KNN) algorithm is embedded to determine the inflection points (ɛ) and minPts in the data. This counters the inherent model failure of DBSCAN in dealing with high-dimensional data and eliminates the requirement for manual intervention in the model procedure, thereby fully avoiding potential human error and automating the computing process. A case study on benchmarking transport safety systems for member countries of the Organization of American States (OAS) demonstrates the reliability, adaptability, and efficiency of the proposed model. It moreover reflects its feasibility in resolving real-life socio-economic issues by offering valuable insights and potential solutions in economic investment and funding allocation in regard to transport safety strategy. Overall, this study provides government officials, managers, and policymakers with a valuable tool for handling MCDM activities in socio-economic development with considerable practicality and credibility.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.