Jiaqiang Dang , Yugang Li , Xunxun Zhang , Jingwei Zhang , Qi Wang , Qinglong An , Weiwei Ming , Haowei Wang , Ming Chen
{"title":"Surface fatigue characterization and its enhancement by the engineered ultrasonic rolling process for 300 M ultrahigh strength steel","authors":"Jiaqiang Dang , Yugang Li , Xunxun Zhang , Jingwei Zhang , Qi Wang , Qinglong An , Weiwei Ming , Haowei Wang , Ming Chen","doi":"10.1016/j.tafmec.2024.104707","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue life of surface layer (FSL) is innovatively characterized to accurately capture the effect of surface integrity on the fatigue behavior of the components. The sensitivity of FSL of 300 M ultrahigh strength steel to the surface integrity indexes induced by representative manufacturing processes was analyzed by analytical modeling and fatigue tests from the perspective of engineering fracture mechanics. The ultrasonic surface rolling process (USRP) was introduced to optimize the fatigue limit of 300 M steel, and the improvement in fatigue life was experimentally quantified. Besides, the fracture analysis was conducted to provide the reason why USRP can enhance the fatigue behavior of 300 M steel. The results show that FSL occupies a majority with percentage of over 95 % in the entire fatigue life and a strong relation with the machined surface defects, especially the surface machining marks. The excellent surface finishing effect and high compressive residual stresses induced by engineered USRP could transfer the crack source from surface machining marks into subsurface inclusions, which greatly prolongs the fatigue crack initiation life and thereby the entire fatigue life. To be specific, the fatigue life was elevated by more than 40 times and the fatigue strength was increased by 34.7 % after USRP for the tested 300 M steel.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004579","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fatigue life of surface layer (FSL) is innovatively characterized to accurately capture the effect of surface integrity on the fatigue behavior of the components. The sensitivity of FSL of 300 M ultrahigh strength steel to the surface integrity indexes induced by representative manufacturing processes was analyzed by analytical modeling and fatigue tests from the perspective of engineering fracture mechanics. The ultrasonic surface rolling process (USRP) was introduced to optimize the fatigue limit of 300 M steel, and the improvement in fatigue life was experimentally quantified. Besides, the fracture analysis was conducted to provide the reason why USRP can enhance the fatigue behavior of 300 M steel. The results show that FSL occupies a majority with percentage of over 95 % in the entire fatigue life and a strong relation with the machined surface defects, especially the surface machining marks. The excellent surface finishing effect and high compressive residual stresses induced by engineered USRP could transfer the crack source from surface machining marks into subsurface inclusions, which greatly prolongs the fatigue crack initiation life and thereby the entire fatigue life. To be specific, the fatigue life was elevated by more than 40 times and the fatigue strength was increased by 34.7 % after USRP for the tested 300 M steel.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.