Zhaosheng Yao , Ruimin Shao , Muhammad Zain , Yuanyuan Zhao , Ting Tian , Jianliang Wang , Dingshun Zhang , Tao Liu , Xiaoxin Song , Chengming Sun
{"title":"Achieving wheat seedling freezing injury assessment during the seedling stage using Unmanned Ground Vehicle (UGV) and hyperspectral imaging technology","authors":"Zhaosheng Yao , Ruimin Shao , Muhammad Zain , Yuanyuan Zhao , Ting Tian , Jianliang Wang , Dingshun Zhang , Tao Liu , Xiaoxin Song , Chengming Sun","doi":"10.1016/j.eja.2024.127375","DOIUrl":null,"url":null,"abstract":"<div><div>Freezing injury may cause irreversible damage to wheat (<em><strong>Triticum aestivum L</strong></em>) tissues and can significantly reduce yield and quality. Therefore, quick and non-destructively estimating the degree of frost damage for formulating anti-freezing protection strategies and preventing frost damage is very crucial. In this study, we obtained hyperspectral images of wheat leaves for accurate identification of frost damage. A remote-controlled Unmanned Ground Vehicle (UGV) equipped with an imaging spectral camera was used to capture the hyperspectral images of frost-damaged wheat leaves. We compared the efficiency of two methods (the one without removal of weeds, and the other is to remove the corresponding area of weeds from the hyperspectral image by Deeplab V3+) for estimation of wheat freezing damage degree by using four different algorithms; Support Vector Machine Classification (SVM), Mahalanobis Distance Classification (MaD), Minimum Distance Classification (MiD), and Maximum Likelihood Classification (ML). We found that, Deeplab V3+ can efficiently identify the weeds from hyperspectral images, as the overall accuracy (OA) values of different algorithms were high in images with weeds removal as compared to the values in weeds containing images. Further, applying ML model after weeds removal have high OA (93.26 %) as compared to the other models. Thus, using Deeplab V3+ and ML can be a potential approach to identify the freezing injury in wheat for sustainable agricultural productivity.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"161 ","pages":"Article 127375"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S116103012400296X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Freezing injury may cause irreversible damage to wheat (Triticum aestivum L) tissues and can significantly reduce yield and quality. Therefore, quick and non-destructively estimating the degree of frost damage for formulating anti-freezing protection strategies and preventing frost damage is very crucial. In this study, we obtained hyperspectral images of wheat leaves for accurate identification of frost damage. A remote-controlled Unmanned Ground Vehicle (UGV) equipped with an imaging spectral camera was used to capture the hyperspectral images of frost-damaged wheat leaves. We compared the efficiency of two methods (the one without removal of weeds, and the other is to remove the corresponding area of weeds from the hyperspectral image by Deeplab V3+) for estimation of wheat freezing damage degree by using four different algorithms; Support Vector Machine Classification (SVM), Mahalanobis Distance Classification (MaD), Minimum Distance Classification (MiD), and Maximum Likelihood Classification (ML). We found that, Deeplab V3+ can efficiently identify the weeds from hyperspectral images, as the overall accuracy (OA) values of different algorithms were high in images with weeds removal as compared to the values in weeds containing images. Further, applying ML model after weeds removal have high OA (93.26 %) as compared to the other models. Thus, using Deeplab V3+ and ML can be a potential approach to identify the freezing injury in wheat for sustainable agricultural productivity.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.