{"title":"Tectonic evolution of the early Paleozoic intraplate orogen in the South China Block: Insights from Ductile Shear Zones in North Wuyishan","authors":"WanLi Gao , ZongXiu Wang","doi":"10.1016/j.jseaes.2024.106343","DOIUrl":null,"url":null,"abstract":"<div><div>The ductile shear zones within the North Wuyishan domain are key to understand the tectonic evolution of the South China Block (SCB). This study integrates a multifaceted approach, including field observations, thin section analysis, quartz electron backscatter diffraction (EBSD), zircon U-Pb dating, and mica <sup>40</sup>Ar/<sup>39</sup>Ar dating, to elucidate the deformation history of these shear zones in North Wuyishan. The research identifies a two-stage deformation process of early Paleozoic. The initial D1 phase is marked by a top-to-SW thrusting shear, with associated felsic veins dated to the Ordovician period (447 ± 10 Ma to 459 ± 4 Ma), correlating with high-grade metamorphism and partial melting. The later D2 phase is characterized by NE-striking foliation and lineation, indicative of sinistral strike-slip shear, dated to the early Devonian (412 Ma) and early Carboniferous (∼354 Ma). The D1 phase suggests early crustal thickening and melting within the Cathaysia block, while D2 indicates a transpressional regime during post-orogenic adjustment. The geological features of the SCB, notably the absence of arc magmatism, ophiolitic mélange, and high-pressure metamorphism, comply with an intracontinental rift closure model as previously proposed. This model supports the hypothesis that the Early Paleozoic intracontinental orogeny in the SCB was likely a far-field consequence of a continental collision between the SCB-North Vietnam and South Vietnam blocks near the east Gondwana supercontinent.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106343"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003389","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ductile shear zones within the North Wuyishan domain are key to understand the tectonic evolution of the South China Block (SCB). This study integrates a multifaceted approach, including field observations, thin section analysis, quartz electron backscatter diffraction (EBSD), zircon U-Pb dating, and mica 40Ar/39Ar dating, to elucidate the deformation history of these shear zones in North Wuyishan. The research identifies a two-stage deformation process of early Paleozoic. The initial D1 phase is marked by a top-to-SW thrusting shear, with associated felsic veins dated to the Ordovician period (447 ± 10 Ma to 459 ± 4 Ma), correlating with high-grade metamorphism and partial melting. The later D2 phase is characterized by NE-striking foliation and lineation, indicative of sinistral strike-slip shear, dated to the early Devonian (412 Ma) and early Carboniferous (∼354 Ma). The D1 phase suggests early crustal thickening and melting within the Cathaysia block, while D2 indicates a transpressional regime during post-orogenic adjustment. The geological features of the SCB, notably the absence of arc magmatism, ophiolitic mélange, and high-pressure metamorphism, comply with an intracontinental rift closure model as previously proposed. This model supports the hypothesis that the Early Paleozoic intracontinental orogeny in the SCB was likely a far-field consequence of a continental collision between the SCB-North Vietnam and South Vietnam blocks near the east Gondwana supercontinent.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.