Hsiang-Jen Hong , Sang-Yoon Chang , Wenjun Fan , Simeon Wuthier , Xiaobo Zhou
{"title":"Secure and Efficient Authentication using Linkage for permissionless Bitcoin network","authors":"Hsiang-Jen Hong , Sang-Yoon Chang , Wenjun Fan , Simeon Wuthier , Xiaobo Zhou","doi":"10.1016/j.comnet.2024.110840","DOIUrl":null,"url":null,"abstract":"<div><div>The cryptocurrency’s permissionless and large-scale broadcasting requirements prohibit the traditional authentication implementation on the blockchain’s underlying peer-to-peer (P2P) networking. Thus, blockchain networking implementations remain vulnerable to networking integrity threats such as spoofing or hijacking. We design Secure and Efficient Authentication using Linkage (SEAL) to build connection security for permissionless Bitcoin networking. SEAL uses the linkage between the packets for a symmetric operation, in contrast to the traditional authentication approach relying on identity-credential-based trust. To make it appropriate for cryptocurrency networking, SEAL utilizes the packet header, protects the end-to-end connection, and separates the online process and the offline process so that the real-time overhead is minimal for greater efficiency and practicality. We implement SEAL on a functioning Bitcoin node and demonstrate that SEAL operates efficiently with minimal overhead. Specifically, it reduces the hash rate by only 1.3% compared to an unsecured node. Additionally, we use a network simulator to emulate the Bitcoin Mainnet and analyze SEAL’s impact on block propagation delay. SEAL yields 2.04 times smaller delay and 1.25 times smaller delay in block propagation than HMAC and ChaCha20-Poly1305, respectively. The key advantage of SEAL is that it requires fewer hash computations and simpler mixing operations, resulting in significantly lower computational overhead compared to traditional authentication schemes based on message authentication codes (MACs).</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006728","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The cryptocurrency’s permissionless and large-scale broadcasting requirements prohibit the traditional authentication implementation on the blockchain’s underlying peer-to-peer (P2P) networking. Thus, blockchain networking implementations remain vulnerable to networking integrity threats such as spoofing or hijacking. We design Secure and Efficient Authentication using Linkage (SEAL) to build connection security for permissionless Bitcoin networking. SEAL uses the linkage between the packets for a symmetric operation, in contrast to the traditional authentication approach relying on identity-credential-based trust. To make it appropriate for cryptocurrency networking, SEAL utilizes the packet header, protects the end-to-end connection, and separates the online process and the offline process so that the real-time overhead is minimal for greater efficiency and practicality. We implement SEAL on a functioning Bitcoin node and demonstrate that SEAL operates efficiently with minimal overhead. Specifically, it reduces the hash rate by only 1.3% compared to an unsecured node. Additionally, we use a network simulator to emulate the Bitcoin Mainnet and analyze SEAL’s impact on block propagation delay. SEAL yields 2.04 times smaller delay and 1.25 times smaller delay in block propagation than HMAC and ChaCha20-Poly1305, respectively. The key advantage of SEAL is that it requires fewer hash computations and simpler mixing operations, resulting in significantly lower computational overhead compared to traditional authentication schemes based on message authentication codes (MACs).
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.